1,916 research outputs found

    SWOT : Secure Wireless Object Tracking with Key Renewal Mechanism for Indoor Wireless Sensor Network

    Get PDF
    Tracking system is one of concerning issue in wireless sensor network (WSN) application. The accuracy of the location estimation from nodes is important parameter in tracking system. However, many various attacks try to manipulate the estimated location or try to provide false nodes data transmission. The secure and privacy data sharing of the estimation is also become another priority in WSN. Hence, this paper focuses on employing secure wireless object tracking (SWOT) system which is added by the reliable method in privacy data sharing. By proposing the transmission system based cryptographic mechanism, some parameter data that are required in estimated calculation such as RSSI, coordinates, pathloss exponent (PLE), and estimated distance will be hidden using encryption process. Due to the limited computational device, we propose security scheme without raising computational capability. Layered encryption using AES 128, RSA 2048, MD5 and SHA-1 provide high performance authentication and data encryption services for each nodes. Implementing mobile cooperative tracking scenario refers to previous work, the proposed security scheme is efficient in terms of processing time which could not influenced to the estimated location accuracy. Moreover, the authentication protocol which is adopted from one time password scenario can apply the key renewal mechanism for AES 128 and MD5 algorithm. The experimental results show that SWOT system achieves 75.95 ms processing time using Raspberry Pi devices including trilateration algorithm and security process. Meanwhile, PC server consumes around 82.7 ms for decrypting, calculating and showing the estimated position by modified iterated extended Kalman filter (IEKF) algorithm

    Mitigating Botnet-based DDoS Attacks against Web Servers

    Get PDF
    Distributed denial-of-service (DDoS) attacks have become wide-spread on the Internet. They continuously target retail merchants, financial companies and government institutions, disrupting the availability of their online resources and causing millions of dollars of financial losses. Software vulnerabilities and proliferation of malware have helped create a class of application-level DDoS attacks using networks of compromised hosts (botnets). In a botnet-based DDoS attack, an attacker orders large numbers of bots to send seemingly regular HTTP and HTTPS requests to a web server, so as to deplete the server's CPU, disk, or memory capacity. Researchers have proposed client authentication mechanisms, such as CAPTCHA puzzles, to distinguish bot traffic from legitimate client activity and discard bot-originated packets. However, CAPTCHA authentication is vulnerable to denial-of-service and artificial intelligence attacks. This dissertation proposes that clients instead use hardware tokens to authenticate in a federated authentication environment. The federated authentication solution must resist both man-in-the-middle and denial-of-service attacks. The proposed system architecture uses the Kerberos protocol to satisfy both requirements. This work proposes novel extensions to Kerberos to make it more suitable for generic web authentication. A server could verify client credentials and blacklist repeated offenders. Traffic from blacklisted clients, however, still traverses the server's network stack and consumes server resources. This work proposes Sentinel, a dedicated front-end network device that intercepts server-bound traffic, verifies authentication credentials and filters blacklisted traffic before it reaches the server. Using a front-end device also allows transparently deploying hardware acceleration using network co-processors. Network co-processors can discard blacklisted traffic at the hardware level before it wastes front-end host resources. We implement the proposed system architecture by integrating existing software applications and libraries. We validate the system implementation by evaluating its performance under DDoS attacks consisting of floods of HTTP and HTTPS requests

    Security and privacy aspects of mobile applications for post-surgical care

    Full text link
    Mobile technologies have the potential to improve patient monitoring, medical decision making and in general the efficiency and quality of health delivery. They also pose new security and privacy challenges. The objectives of this work are to (i) Explore and define security and privacy requirements on the example of a post-surgical care application, and (ii) Develop and test a pilot implementation Post-Surgical Care Studies of surgical out- comes indicate that timely treatment of the most common complications in compliance with established post-surgical regiments greatly improve success rates. The goal of our pilot application is to enable physician to optimally synthesize and apply patient directed best medical practices to prevent post-operative complications in an individualized patient/procedure specific fashion. We propose a framework for a secure protocol to enable doctors to check most common complications for their patient during in-hospital post- surgical care. We also implemented our construction and cryptographic protocols as an iPhone application on the iOS using existing cryptographic services and libraries

    A method for making password-based key exchange resilient to server compromise

    Get PDF
    Abstract. This paper considers the problem of password-authenticated key exchange (PAKE) in a client-server setting, where the server authenticates using a stored password file, and it is desirable to maintain some degree of security even if the server is compromised. A PAKE scheme is said to be resilient to server compromise if an adversary who compromises the server must at least perform an offline dictionary attack to gain any advantage in impersonating a client. (Of course, offline dictionary attacks should be infeasible in the absence of server compromise.) One can see that this is the best security possible, since by definition the password file has enough information to allow one to play the role of the server, and thus to verify passwords in an offline dictionary attack. While some previous PAKE schemes have been proven resilient to server compromise, there was no known general technique to take an arbitrary PAKE scheme and make it provably resilient to server compromise. This paper presents a practical technique for doing so which requires essentially one extra round of communication and one signature computation/verification. We prove security in the universal composability framework by (1) defining a new functionality for PAKE with resilience to server compromise, (2) specifying a protocol combining this technique with a (basic) PAKE functionality, and (3) proving (in the random oracle model) that this protocol securely realizes the new functionality.

    Authentication and Key Management Automation in Decentralized Secure Email and Messaging via Low-Entropy Secrets

    Get PDF
    We revisit the problem of entity authentication in decentralized end-to-end encrypted email and secure messaging to propose a practical and self-sustaining cryptographic solution based on password-authenticated key exchange (PAKE). This not only allows users to authenticate each other via shared low-entropy secrets, e.g., memorable words, without a public key infrastructure or a trusted third party, but it also paves the way for automation and a series of cryptographic enhancements; improves security by minimizing the impact of human error and potentially improves usability. First, we study a few vulnerabilities in voice-based out-of-band authentication, in particular a combinatorial attack against lazy users, which we analyze in the context of a secure email solution. Next, we propose solving the problem of secure equality test using PAKE to achieve entity authentication and to establish a shared high-entropy secret key. Our solution lends itself to offline settings, compatible with the inherently asynchronous nature of email and modern messaging systems. The suggested approach enables enhancements in key management such as automated key renewal and future key pair authentications, multi-device synchronization, secure secret storage and retrieval, and the possibility of post-quantum security as well as facilitating forward secrecy and deniability in a primarily symmetric-key setting. We also discuss the use of auditable PAKEs for mitigating a class of online guess and abort attacks in authentication protocols
    • …
    corecore