133,820 research outputs found
Effective Attraction Interactions between Like-charge Macroions Bound to Binary Fluid Lipid Membranes
Using integral equation theory of liquids to a binary mixed fluid lipid
membrane, we study the membrane-mediated interactions between the macroions and
the redistribution of neutral and charged lipids due to binding macroions. We
find that when the concentration of binding macroions is infinitely dilute, the
main contribution to the attractive potential between macroions is the line
tension between neutral and charged lipids of the membrane, and the bridging
effect also contributes to the attraction. As the relative concentration of
charged lipids is increased, we observe a repulsive - attractive - repulsive
potential transition due to the competition between the line tension of lipids
and screened electrostatic macroion-macroion interactions. For the finite
concentration of macroions, the main feature of the attraction is similar to
the infinite dilution case. However, due to the interplay of formation of
charged lipid - macroion complexes, the line tension of redistributed binary
lipids induced by single macroion is lowered in this case, and the maximum of
attractive potential will shift toward the higher values of the charged lipid
concentration
Coupling between pore formation and phase separation in charged lipid membranes
We investigated the effect of charge on the membrane morphology of giant
unilamellar vesicles (GUVs) composed of various mixtures containing charged
lipids. We observed the membrane morphologies by fluorescent and confocal laser
microscopy in lipid mixtures consisting of a neutral unsaturated lipid
[dioleoylphosphatidylcholine (DOPC)], a neutral saturated lipid
[dipalmitoylphosphatidylcholine (DPPC)], a charged unsaturated lipid
[dioleoylphosphatidylglycerol (DOPG)], a charged saturated
lipid [dipalmitoylphosphatidylglycerol (DPPG)], and
cholesterol (Chol). In binary mixtures of neutral DOPC/DPPC and charged
DOPC/DPPG, spherical vesicles were formed. On the other
hand, pore formation was often observed with GUVs consisting of
DOPG and DPPC. In a DPPC/DPPG/Chol
ternary mixture, pore-formed vesicles were also frequently observed. The
percentage of pore-formed vesicles increased with the DPPG
concentration. Moreover, when the head group charges of charged lipids were
screened by the addition of salt, pore-formed vesicles were suppressed in both
the binary and ternary charged lipid mixtures. We discuss the mechanisms of
pore formation in charged lipid mixtures and the relationship between phase
separation and the membrane morphology. Finally, we reproduce the results seen
in experimental systems by using coarse-grained molecular dynamics simulations.Comment: 34 pages, 10 figure
Charge-induced phase separation in lipid membranes
The phase separation in lipid bilayers that include negatively charged lipids
is examined experimentally. We observed phase-separated structures and
determined the membrane miscibility temperatures in several binary and ternary
lipid mixtures of unsaturated neutral lipid, dioleoylphosphatidylcholine
(DOPC), saturated neutral lipid, dipalmitoylphosphatidylcholine (DPPC),
unsaturated charged lipid, dioleoylphosphatidylglycerol
(DOPG), saturated charged lipid,
dipalmitoylphosphatidylglycerol (DPPG), and cholesterol.
In binary mixtures of saturated and unsaturated charged lipids, the combination
of the charged head with the saturation of hydrocarbon tail is a dominant
factor for the stability of membrane phase separation.
DPPG enhances phase separation, while
DOPG suppresses it. Furthermore, the addition of
DPPG to a binary mixture of DPPC/cholesterol induces phase
separation between DPPG-rich and cholesterol-rich phases.
This indicates that cholesterol localization depends strongly on the electric
charge on the hydrophilic head group rather than on the ordering of the
hydrocarbon tails. Finally, when DPPG was added to a
neutral ternary system of DOPC/DPPC/Cholesterol (a conventional model of
membrane rafts), a three-phase coexistence was produced. We conclude by
discussing some qualitative features of the phase behaviour in charged
membranes using a free energy approach.Comment: 17 pages, 6 figure
A method for microdetermination of major neutral lipids and an application of the procedure to tissue lipids
Cholesterol, cholesteryl esters, triglycerides and fatty acids as major neutral lipids and phospholipids were examined in quantitative analysis. The method consisted of three steps: (1) separation of lipids by one-dimensional thin-layer chromatography on silica gel plates; (2) elution of neutral lipids from scraped silica gel with chloroform-methanol (4:1); and (3) colorimetric determination of individual neutral lipids in eluates and phospholipids in silica gel. The conditions were modified for chromotropic acid reaction for determining triglycerides. Laurell's method for determining fatty acids was also modified to apply to quantitative thin-layer chromatography. The accuracy of the modified methods was well-defined as the absorbance values were on a linear curve. A quantitative study was made of the recovery of triglycerides and fatty acids after chromatography. Combining these modified methods and colorimetry for determination of cholesterol cholesteryl esters and phospholipids, the author established a micromethod for determining the major neutral lipids and phospholipids by thin-layer chromatography. Lipids from HeLa, S-3 cells were analyzed to examine the applicability of this method to tissues. The results indicated that the new method permitted a reliable estimation of the major neutral lipids and phospholipids from small amounts of tissues.</p
ER stress in antigen‐presenting cells promotes NKT cell activation through endogenous neutral lipids
CD1d-restricted invariant natural killer T (iNKT) cells constitute a common glycolipid-reactive innate-like T-cell subset with a broad impact on innate and adaptive immunity. While several microbial glycolipids are known to activate iNKT cells, the cellular mechanisms leading to endogenous CD1d-dependent glycolipid responses remain largely unclear. Here, we show that endoplasmic reticulum (ER) stress in APCs is a potent inducer of CD1d-dependent iNKT cell autoreactivity. This pathway relies on the presence of two transducers of the unfolded protein response: inositol-requiring enzyme-1a (IRE1α) and protein kinase R-like ER kinase (PERK). Surprisingly, the neutral but not the polar lipids generated within APCs undergoing ER stress are capable of activating iNKT cells. These data reveal that ER stress is an important mechanism to elicit endogenous CD1d-restricted iNKT cell responses through induction of distinct classes of neutral lipids
Acute Hypercapnia/Ischemia Alters the Esterification of Arachidonic Acid and Docosahexaenoic Acid Epoxide Metabolites in Rat Brain Neutral Lipids.
In the brain, approximately 90% of oxylipins are esterified to lipids. However, the significance of this esterification process is not known. In the present study, we (1) validated an aminopropyl solid phase extraction (SPE) method for separating esterified lipids using 100 and 500 mg columns and (2) applied the method to quantify the distribution of esterified oxylipins within phospholipids (PL) and neutral lipids (NL) (i.e. triacylglycerol and cholesteryl ester) in rats subjected to head-focused microwave fixation (controls) or CO2 -induced hypercapnia/ischemia. We hypothesized that oxylipin esterification into these lipid pools will be altered following CO2 -induced hypercapnia/ischemia. Lipids were extracted from control (n = 8) and CO2 -asphyxiated (n = 8) rat brains and separated on aminopropyl cartridges to yield PL and NL. The separated lipid fractions were hydrolyzed, purified with hydrophobic-lipophilic-balanced SPE columns, and analyzed with ultra-high-pressure liquid chromatography coupled to tandem mass spectrometry. Method validation showed that the 500 mg (vs 100 mg) aminopropyl columns yielded acceptable separation and recovery of esterified fatty acid epoxides but not other oxylipins. Two epoxides of arachidonic acid (ARA) were significantly increased, and three epoxides of docosahexaenoic acid (DHA) were significantly decreased in brain NL of CO2 -asphyxiated rats compared to controls subjected to head-focused microwave fixation. PL-bound fatty acid epoxides were highly variable and did not differ significantly between the groups. This study demonstrates that hypercapnia/ischemia alters the concentration of ARA and DHA epoxides within NL, reflecting an active turnover process regulating brain fatty acid epoxide concentrations
Effect of charged lipids on the ionization behavior of glutamic acid containing transmembrane helices
Transmembrane proteins make up critical components of living cells. Protein function can be greatly impacted by the charged state of its respective components, the side chains of amino acid residues. Thus far, in the lipid membrane, little is known about the properties of residues such as glutamic acid. To explore these properties, I have included glutamic acid in a suitable model peptide-lipid system for fundamental biophysical experiments. Within the system, I have placed a glutamic acid residue instead of leucine in the L14 position of the helical hydrophobic peptide GWALP23 (acetyl-GGALWLALALALAL14ALALWLAGA-amide). Substitutions of glutamine and aspartic acid serve as controls for the properties of the peptide helix in lipid bilayer membranes. The GWALP23 peptide derivatives are placed in various lipid bilayer environments.
Specifically, I investigated the impact of glutamic acid (position E14) when differently charged lipids are present in the bilayer. The underlying importance is to understand the charged or neutral state behavior of glutamic acid under conditions where it is important for the functioning of several types of membrane proteins, such as ion channels, drug transporters and others. For the experimental plan, core alanine resides of GWALP23 were labeled with deuterium to enable detection of helix characteristics by solid-state 2H NMR spectroscopy. The peptide-lipid samples included primarily the neutral lipid DMPC, 1,2-dimyristoylphosphatidylcholine, (with 14-carbon acyl chains), along with 10% of a charged lipid. For each membrane system, I confirmed lipid bilayer formation for the particular peptide-lipid mixture by solid-state 31P NMR. The charged lipids consisted of the negatively charged lipid DMPG, 1,2-dimyristoylphosphatidylglycerol, and the positively charged lipid DMTAP, 1,2-dimyristoyl-3-trimethylammonium-propane. These charged lipids were found to influence the properties of the GWALP23 helix when E14 was present. DMTAP, in particular, improves the 2H NMR spectra and the prospects for characterizing helix dynamics when a glutamic acid residue is present. While some experiments were cut short due to a global emergency, the results show promise for characterizing glutamic acid in model helices and actual membrane proteins
Coarse-grained molecular dynamics simulation of binary charged lipid membranes: Phase separation and morphological dynamics
Biomembranes, which are mainly composed of neutral and charged lipids,
exhibit a large variety of functional structures and dynamics. Here, we report
a coarse-grained molecular dynamics (MD) simulation of the phase separation and
morphological dynamics in charged lipid bilayer vesicles. The screened
long-range electrostatic repulsion among charged head groups delays or inhibits
the lateral phase separation in charged vesicles compared with neutral
vesicles, suggesting the transition of the phase-separation mechanism from
spinodal decomposition to nucleation or homogeneous dispersion. Moreover, the
electrostatic repulsion causes morphological changes, such as pore formation,
and further transformations into disk, string, and bicelle structures, which
are spatiotemporally coupled to the lateral segregation of charged lipids.
Based on our coarse-grained MD simulation, we propose a plausible mechanism of
pore formation at the molecular level. The pore formation in a
charged-lipid-rich domain is initiated by the prior disturbance of the local
molecular orientation in the domain.Comment: 12pages, 9 figure
- …
