274 research outputs found

    Model-reference adaptive control based on neurofuzzy networks

    Get PDF
    Model reference adaptive control (MRAC) is a popular approach to control linear systems, as it is relatively simple to implement. However, the performance of the linear MRAC deteriorates rapidly when the system becomes nonlinear. In this paper, a nonlinear MRAC based on neurofuzzy networks is derived. Neurofuzzy networks are chosen not only because they can approximate nonlinear functions with arbitrary accuracy, but also they are compact in their supports, and the weights of the network can be readily updated on-line. The implementation of the neurofuzzy network-based MRAC is discussed, and the local stability of the system controlled by the proposed controller is established. The performance of the neurofuzzy network-based MRAC is illustrated by examples involving both linear and nonlinear systems. © 2004 IEEE.published_or_final_versio

    Fully Evolvable Optimal Neurofuzzy Controller Using Adaptive Critic Designs

    Get PDF
    A near-optimal neurofuzzy external controller is designed in this paper for a static compensator (STATCOM) in a multimachine power system. The controller provides an auxiliary reference signal for the STATCOM in such a way that it improves the damping of the rotor speed deviations of its neighboring generators. A zero-order Takagi-Sugeno fuzzy rule base constitutes the core of the controller. A heuristic dynamic programming (HDP) based approach is used to further train the controller and enable it to provide nonlinear near-optimal control at different operating conditions of the power system. Based on the connectionist systems theory, the parameters of the neurofuzzy controller, including the membership functions, undergo training. Simulation results are provided that compare the performance of the neurofuzzy controller with and without updating the fuzzy set parameters. Simulation results indicate that updating the membership functions can noticeably improve the performance of the controller and reduce the size of the STATCOM, which leads to lower capital investment

    Self-tuning neurofuzzy control for nonlinear systems with offset

    Get PDF
    A self-tuning neurofuzzy controller with an ability to remove offsets is derived in this paper based on the self-tuning integrating controller derived for the local linear model. The training target for the proposed controllers is derived, and they can be trained by the simplified recursive least squares (RLS) method with a computing time that is linear instead of geometric in the number of weights in the network. Further, the simplified RLS method not only has the same convergence property as the RLS method, it also has a better ability in tracking varying parameters. The performance of the self-tuning neurofuzzy controller is illustrated by examples involving both linear and nonlinear systems.published_or_final_versio

    Design an intelligent controller for full vehicle nonlinear active suspension systems

    Get PDF
    The main objective of designed the controller for a vehicle suspension system is to reduce the discomfort sensed by passengers which arises from road roughness and to increase the ride handling associated with the pitching and rolling movements. This necessitates a very fast and accurate controller to meet as much control objectives, as possible. Therefore, this paper deals with an artificial intelligence Neuro-Fuzzy (NF) technique to design a robust controller to meet the control objectives. The advantage of this controller is that it can handle the nonlinearities faster than other conventional controllers. The approach of the proposed controller is to minimize the vibrations on each corner of vehicle by supplying control forces to suspension system when travelling on rough road. The other purpose for using the NF controller for vehicle model is to reduce the body inclinations that are made during intensive manoeuvres including braking and cornering. A full vehicle nonlinear active suspension system is introduced and tested. The robustness of the proposed controller is being assessed by comparing with an optimal Fractional Order (FOPID) controller. The results show that the intelligent NF controller has improved the dynamic response measured by decreasing the cost function

    Online Intelligent Controllers for an Enzyme Recovery Plant: Design Methodology and Performance

    Get PDF
    This paper focuses on the development of intelligent controllers for use in a process of enzyme recovery from pineapple rind. The proteolytic enzyme bromelain (EC 3.4.22.4) is precipitated with alcohol at low temperature in a fed-batch jacketed tank. Temperature control is crucial to avoid irreversible protein denaturation. Fuzzy or neural controllers offer a way of implementing solutions that cover dynamic and nonlinear processes. The design methodology and a comparative study on the performance of fuzzy-PI, neurofuzzy, and neural network intelligent controllers are presented. To tune the fuzzy PI Mamdani controller, various universes of discourse, rule bases, and membership function support sets were tested. A neurofuzzy inference system (ANFIS), based on Takagi-Sugeno rules, and a model predictive controller, based on neural modeling, were developed and tested as well. Using a Fieldbus network architecture, a coolant variable speed pump was driven by the controllers. The experimental results show the effectiveness of fuzzy controllers in comparison to the neural predictive control. The fuzzy PI controller exhibited a reduced error parameter (ITAE), lower power consumption, and better recovery of enzyme activity

    Analysis and Application of Advanced Control Strategies to a Heating Element Nonlinear Model

    Get PDF
    open4siSustainable control has begun to stimulate research and development in a wide range of industrial communities particularly for systems that demand a high degree of reliability and availability (sustainability) and at the same time characterised by expensive and/or safety critical maintenance work. For heating systems such as HVAC plants, clear conflict exists between ensuring a high degree of availability and reducing costly maintenance times. HVAC systems have highly non-linear dynamics and a stochastic and uncontrollable driving force as input in the form of intake air speed, presenting an interesting challenge for modern control methods. Suitable control methods can provide sustainable maximisation of energy conversion efficiency over wider than normally expected air speeds and temperatures, whilst also giving a degree of “tolerance” to certain faults, providing an important impact on maintenance scheduling, e.g. by capturing the effects of some system faults before they become serious.This paper presents the design of different control strategies applied to a heating element nonlinear model. The description of this heating element was obtained exploiting a data driven and physically meaningful nonlinear continuous time model, which represents a test bed used in passive air conditioning for sustainable housing applications. This model has low complexity while achieving high simulation performance. The physical meaningfulness of the model provides an enhanced insight into the performance and functionality of the system. In return, this information can be used during the system simulation and improved model based and data driven control designs for tight temperature regulation. The main purpose of this study is thus to give several examples of viable and practical designs of control schemes with application to this heating element model. Moreover, extensive simulations and Monte Carlo analysis are the tools for assessing experimentally the main features of the proposed control schemes, in the presence of modelling and measurement errors. These developed control methods are also compared in order to evaluate advantages and drawbacks of the considered solutions. Finally, the exploited simulation tools can serve to highlight the potential application of the proposed control strategies to real air conditioning systems.openTurhan, T.; Simani, S.; Zajic, I.; Gokcen Akkurt, G.Turhan, T.; Simani, Silvio; Zajic, I.; Gokcen Akkurt, G

    Activity Report 1996-97

    Get PDF

    Development of an adaptive neurofuzzy controller

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Access to

    Get PDF
    This paper focuses on the development of intelligent controllers for use in a process of enzyme recovery from pineapple rind. The proteolytic enzyme bromelain (EC 3.4.22.4) is precipitated with alcohol at low temperature in a fed-batch jacketed tank. Temperature control is crucial to avoid irreversible protein denaturation. Fuzzy or neural controllers offer a way of implementing solutions that cover dynamic and nonlinear processes. The design methodology and a comparative study on the performance of fuzzy-PI, neurofuzzy, and neural network intelligent controllers are presented. To tune the fuzzy PI Mamdani controller, various universes of discourse, rule bases, and membership function support sets were tested. A neurofuzzy inference system (ANFIS), based on Takagi-Sugeno rules, and a model predictive controller, based on neural modeling, were developed and tested as well. Using a Fieldbus network architecture, a coolant variable speed pump was driven by the controllers. The experimental results show the effectiveness of fuzzy controllers in comparison to the neural predictive control. The fuzzy PI controller exhibited a reduced error parameter (ITAE), lower power consumption, and better recovery of enzyme activity
    corecore