110,816 research outputs found
Allergic fetal priming leads to developmental, behavioral and neurobiological changes in mice.
The state of the mother's immune system during pregnancy has an important role in fetal development and disruptions in the balance of this system are associated with a range of neurologic, neuropsychiatric and neurodevelopmental disorders. Epidemiological and clinical reports reveal various clues that suggest a possible association between developmental neuropsychiatric disorders and family history of immune system dysfunction. Over the past three decades, analogous increases have been reported in both the incidence of neurodevelopmental disorders and immune-related disorders, particularly allergy and asthma, raising the question of whether allergic asthma and characteristics of various neurodevelopmental disorders share common causal links. We used a mouse model of maternal allergic asthma to test this novel hypothesis that early fetal priming with an allergenic exposure during gestation produces behavioral deficits in offspring. Mothers were primed with an exposure to ovalbumin (OVA) before pregnancy, then exposed to either aerosolized OVA or vehicle during gestation. Both male and female mice born to mothers exposed to aerosolized OVA during gestation exhibited altered developmental trajectories in weight and length, decreased sociability and increased marble-burying behavior. Moreover, offspring of OVA-exposed mothers were observed to have increased serotonin transporter protein levels in the cortex. These data demonstrate that behavioral and neurobiological effects can be elicited following early fetal priming with maternal allergic asthma and provide support that maternal allergic asthma may, in some cases, be a contributing factor to neurodevelopmental disorders
Neurodevelopmental disorders
Recent technological advances allow us to measure how the infant brain functions in ways that were not possible just a decade ago. Although methodological advances are exciting, we must also consider how theories guide research: what we look for and how we explain what we find. Indeed, the ways in which research findings are interpreted affects the design of policies, educational practices, and interventions. Thus, the theoretical approaches adopted by scientists have a real impact on the lives of children with neurodevelopmental disorders (NDDs) and their families, as well as on the wider community. Here, we introduce and compare two theoretical approaches that are used to understand NDDs: the neuropsychological account and neuroconstructivism. We show how the former, adult account, is inadequate for explaining NDDs and illustrate this using the examples of Williams syndrome and specific language impairment. Neuroconstructivism, by contrast, focuses on the developing organism and is helping to change the way in which NDDs are investigated. Whereas neuropsychological static approaches assume that one or more ‘modules’ (e.g., visuospatial ability in Williams syndrome) are impaired while the rest of the system is spared (e.g., language in Williams syndrome), neuroconstructivism proposes that basic‐level deficits have subtle cascading effects on numerous domains over development. Neuroconstructivism leads researchers to embrace complexity by establishing large research consortia to integrate findings at multiple levels (e.g., genetic, neural, cognitive, environmental) across developmental time
Visual illusions: An interesting tool to investigate developmental dyslexia and autism spectrum disorder
A visual illusion refers to a percept that is different in some aspect from the physical stimulus. Illusions are a powerful non-invasive tool for understanding the neurobiology of vision, telling us, indirectly, how the brain processes visual stimuli. There are some neurodevelopmental disorders characterized by visual deficits. Surprisingly, just a few studies investigated illusory perception in clinical populations. Our aim is to review the literature supporting a possible role for visual illusions in helping us understand the visual deficits in developmental dyslexia and autism spectrum disorder. Future studies could develop new tools – based on visual illusions – to identify an early risk for neurodevelopmental disorders
Perinatal insults and neurodevelopmental disorders may impact Huntington's disease age of diagnosis
Introduction: The age of diagnosis of Huntington's disease (HD) varies among individuals with the same HTT CAG-repeat expansion size. We investigated whether early-life events, like perinatal insults or neurodevelopmental disorders, influence the diagnosis age. Methods: We used data from 13,856 participants from REGISTRY and Enroll-HD, two large international multicenter observational studies. Disease-free survival analyses of mutation carriers with an HTT CAG repeat expansion size above and including 36 were computed through Kaplan-Meier estimates of median time until an HD diagnosis. Comparisons between groups were computed using a Cox proportional hazard survival model adjusted for CAG-repeat expansion length. We also assessed whether the group effect depended on gender and the affected parent. Results: Insults in the perinatal period were associated with an earlier median age of diagnosis of 45.00 years (95%CI: 42.07–47.92) compared to 51.00 years (95%CI: 50.68–51.31) in the reference group, with a CAG-adjusted hazard ratio of 1.61 (95%CI: 1.26–2.06). Neurodevelopmental disorders were also associated with an earlier median age of diagnosis than the reference group of 47.00 years (95% CI: 43.38–50.62) with a CAG-adjusted hazard ratio of 1.42 (95%CI: 1.16–1.75). These associations did not change significantly with gender or affected parent. Conclusions: These results, derived from large observational datasets, show that perinatal insults and neurodevelopmental disorders are associated with earlier ages of diagnosis of magnitudes similar to the effects of known genetic modifiers of HD. Given their clear temporal separation, these early events may be causative of earlier HD onset, but further research is needed to prove causation
Recommended from our members
Impaired neurodevelopmental pathways in autism spectrum disorder: a review of signaling mechanisms and crosstalk.
BackgroundThe development of an autistic brain is a highly complex process as evident from the involvement of various genetic and non-genetic factors in the etiology of the autism spectrum disorder (ASD). Despite being a multifactorial neurodevelopmental disorder, autistic patients display a few key characteristics, such as the impaired social interactions and elevated repetitive behaviors, suggesting the perturbation of specific neuronal circuits resulted from abnormal signaling pathways during brain development in ASD. A comprehensive review for autistic signaling mechanisms and interactions may provide a better understanding of ASD etiology and treatment.Main bodyRecent studies on genetic models and ASD patients with several different mutated genes revealed the dysregulation of several key signaling pathways, such as WNT, BMP, SHH, and retinoic acid (RA) signaling. Although no direct evidence of dysfunctional FGF or TGF-β signaling in ASD has been reported so far, a few examples of indirect evidence can be found. This review article summarizes how various genetic and non-genetic factors which have been reported contributing to ASD interact with WNT, BMP/TGF-β, SHH, FGF, and RA signaling pathways. The autism-associated gene ubiquitin-protein ligase E3A (UBE3A) has been reported to influence WNT, BMP, and RA signaling pathways, suggesting crosstalk between various signaling pathways during autistic brain development. Finally, the article comments on what further studies could be performed to gain deeper insights into the understanding of perturbed signaling pathways in the etiology of ASD.ConclusionThe understanding of mechanisms behind various signaling pathways in the etiology of ASD may help to facilitate the identification of potential therapeutic targets and design of new treatment methods
Researcher studies nervous system development
Ashley Purdy, who recently finished a master’s degree in biology at VCU and is now pursuing her Ph.D., is studying nerve cells in zebrafish in hopes of unlocking secrets about the human nervous system. The research could shed light on how neurodevelopmental disorders like multiple sclerosis or epilepsy occur
Recommended from our members
Quantifying the resolution of spatial and temporal representation in children with 22q11.2 deletion syndrome.
ObjectivesOur ability to generate mental representation of magnitude from sensory information affects how we perceive and experience the world. Reduced resolution of the mental representations formed from sensory inputs may generate impairment in the proximal and distal information processes that utilize these representations. Impairment of spatial and temporal information processing likely underpins the non-verbal cognitive impairments observed in 22q11.2 deletion syndrome (22q11DS). The present study builds on prior research by seeking to quantify the resolution of spatial and temporal representation in children with 22q11DS, sex chromosome aneuploidy (SCA), and a typically developing (TD) control group.Participants and methodsChildren (22q11DS = 70, SCA = 49, TD = 46) responded to visual or auditory stimuli with varying difference ratios. The participant's task was to identify which of two sequentially presented stimuli was of larger magnitude in terms of, size, duration, or auditory frequency. Detection threshold was calculated as the minimum difference ratio between the "standard" and the "target" stimuli required to achieve 75% accuracy in detecting that the two stimuli were different.ResultsChildren with 22q11DS required larger magnitude difference between spatial stimuli for accurate identification compared with both the SCA and TD groups (% difference from standard: 22q11DS = 14; SCA = 8; TD: 7; F = 8.42, p < 0.001). Temporal detection threshold was also higher for the 22q11DS group to both visual (% difference from standard: 22q11DS = 14; SCA = 8; TD = 7; F = 8.33, p < 0.001) and auditory (% difference from standard: 22q11DS = 23; SCA = 12; TD: 8; F = 8.99, p < 0.001) stimuli compared with both the SCA and TD groups, while the SCA and TD groups displayed equivalent performance on these measures (p's > 0.05). Pitch detection threshold did not differ among the groups (p's > 0.05).ConclusionsThe observation of higher detection thresholds to spatial and temporal stimuli indicates further evidence for reduced resolution in both spatial and temporal magnitude representation in 22q11DS, that does not extend to frequency magnitude representation (pitch detection), and which is not explained by generalized cognitive impairment alone. These findings generate further support for the hypothesis that spatiotemporal hypergranularity of mental representations contributes to the non-verbal cognitive impairment seen in 22q11DS
Morbidity and Mortality ofVery Low Birth Weight Infant Graduates of a Level Three Neonatal Intensive Care Unit
Purpose: To describe the morbidity and mortality of very low birth weight (VLBW) infant graduates of a level three neonatal intensive care unit (NICU) in a medically underserved population. Design: A retrospective chart analysis of 181 live born infants at a regional tertiary center between 2004-2006. Sample: Infants born with a birth weight of 425-1489 grams and gestational age of23-40 weeks (n=127). Main outcome variable: Descriptive statistics were used to describe the incidence of associated VLB W morbidities presenting after discharge along with hospital readmissions and mortality rates. Results: VLBW infants discharged from the NICU had chronic lung disease (24.4%), hearing loss (5.5%), seizures (3%), cerebral palsy (1.6%), mental retardation (0.8%), and visual loss (0.8%). They also showed abnormal neurodevelopmental findings (59%), speech/language disorders (12.5%) and behavioral/learning disorders (1.5%). One death (\u3c1%) was reported after discharge. Forty-five children (35%) were readmitted to the hospital after discharge accounting for 78 hospital admissions
Recommended from our members
Controlled trial of lovastatin combined with an open-label treatment of a parent-implemented language intervention in youth with fragile X syndrome.
BackgroundThe purpose of this study was to conduct a 20-week controlled trial of lovastatin (10 to 40 mg/day) in youth with fragile X syndrome (FXS) ages 10 to 17 years, combined with an open-label treatment of a parent-implemented language intervention (PILI), delivered via distance video teleconferencing to both treatment groups, lovastatin and placebo.MethodA randomized, double-blind trial was conducted at one site in the Sacramento, California, metropolitan area. Fourteen participants were assigned to the lovastatin group; two participants terminated early from the study. Sixteen participants were assigned to the placebo group. Lovastatin or placebo was administered orally in a capsule form, starting at 10 mg and increasing weekly or as tolerated by 10 mg increments, up to a maximum dose of 40 mg daily. A PILI was delivered to both groups for 12 weeks, with 4 activities per week, through video teleconferencing by an American Speech-Language Association-certified Speech-Language Pathologist, in collaboration with a Board-Certified Behavior Analyst. Parents were taught to use a set of language facilitation strategies while interacting with their children during a shared storytelling activity. The main outcome measures included absolute change from baseline to final visit in the means for youth total number of story-related utterances, youth number of different word roots, and parent total number of story-related utterances.ResultsSignificant increases in all primary outcome measures were observed in both treatment groups. Significant improvements were also observed in parent reports of the severity of spoken language and social impairments in both treatment groups. In all cases, the amount of change observed did not differ across the two treatment groups. Although gains in parental use of the PILI-targeted intervention strategies were observed in both treatment groups, parental use of the PILI strategies was correlated with youth gains in the placebo group and not in the lovastatin group.ConclusionParticipants in both groups demonstrated significant changes in the primary outcome measures. The magnitude of change observed across the two groups was comparable, providing additional support for the efficacy of the use of PILI in youth with FXS.Trial registrationUS National Institutes of Health (ClinicalTrials.gov), NCT02642653. Registered 12/30/2015
- …
