6,061 research outputs found

    Analysis, filtering, and control for Takagi-Sugeno fuzzy models in networked systems

    Get PDF
    Copyright © 2015 Sunjie Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.The fuzzy logic theory has been proven to be effective in dealing with various nonlinear systems and has a great success in industry applications. Among different kinds of models for fuzzy systems, the so-called Takagi-Sugeno (T-S) fuzzy model has been quite popular due to its convenient and simple dynamic structure as well as its capability of approximating any smooth nonlinear function to any specified accuracy within any compact set. In terms of such a model, the performance analysis and the design of controllers and filters play important roles in the research of fuzzy systems. In this paper, we aim to survey some recent advances on the T-S fuzzy control and filtering problems with various network-induced phenomena. The network-induced phenomena under consideration mainly include communication delays, packet dropouts, signal quantization, and randomly occurring uncertainties (ROUs). With such network-induced phenomena, the developments on T-S fuzzy control and filtering issues are reviewed in detail. In addition, some latest results on this topic are highlighted. In the end, conclusions are drawn and some possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 11301118 and 61174136, the Natural Science Foundation of Jiangsu Province of China under Grant BK20130017, the Fundamental Research Funds for the Central Universities of China under Grant CUSF-DH-D-2013061, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Adaptive NN output-feedback control for stochastic time-delay nonlinear systems with unknown control coefficients and perturbations

    Get PDF
    This paper addresses the problem of adaptive output-feedback control for more general class of stochastic time-varying delay nonlinear systems with unknown control coefficients and perturbations. By using Lyapunov–Krasovskii functional, backstepping and tuning function technique, a novel adaptive neural network (NN) output-feedback controller is constructed with fewer learning parameters. The designed controller guarantees that all the signals in the closed-loop system are 4-moment (or mean square) semi-globally uniformly ultimately bounded (SGUUB). Finally, a simulation example is shown to demonstrate the effectiveness of the proposed control scheme

    Fuzzy-logic-based control, filtering, and fault detection for networked systems: A Survey

    Get PDF
    This paper is concerned with the overview of the recent progress in fuzzy-logic-based filtering, control, and fault detection problems. First, the network technologies are introduced, the networked control systems are categorized from the aspects of fieldbuses and industrial Ethernets, the necessity of utilizing the fuzzy logic is justified, and the network-induced phenomena are discussed. Then, the fuzzy logic control strategies are reviewed in great detail. Special attention is given to the thorough examination on the latest results for fuzzy PID control, fuzzy adaptive control, and fuzzy tracking control problems. Furthermore, recent advances on the fuzzy-logic-based filtering and fault detection problems are reviewed. Finally, conclusions are given and some possible future research directions are pointed out, for example, topics on two-dimensional networked systems, wireless networked control systems, Quality-of-Service (QoS) of networked systems, and fuzzy access control in open networked systems.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374039, 61473163, and 61374127, the Hujiang Foundation of China under Grants C14002 andD15009, the Engineering and Physical Sciences Research Council (EPSRC) of the UK, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Time-Varying Input and State Delay Compensation for Uncertain Nonlinear Systems

    Full text link
    A robust controller is developed for uncertain, second-order nonlinear systems subject to simultaneous unknown, time-varying state delays and known, time-varying input delays in addition to additive, sufficiently smooth disturbances. An integral term composed of previous control values facilitates a delay-free open-loop error system and the development of the feedback control structure. A stability analysis based on Lyapunov-Krasovskii (LK) functionals guarantees uniformly ultimately bounded tracking under the assumption that the delays are bounded and slowly varying

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation

    Adaptive NN State-Feedback Control for Stochastic High-Order Nonlinear Systems with Time-Varying Control Direction and Delays

    Get PDF
    Nussbaum-type gain function and neural network (NN) approximation approaches are extended to investigate the adaptive statefeedback stabilization problem for a class of stochastic high-order nonlinear time-delay systems. The distinct features of this paper are listed as follows. Firstly, the power order condition is completely removed; the restrictions on system nonlinearities and time-varying control direction are greatly weakened. Then, based on Lyapunov-Krasovskii function and dynamic surface control technique, an adaptive NN controller is constructed to render the closed-loop system semiglobally uniformly ultimately bounded (SGUUB). Finally, a simulation example is shown to demonstrate the effectiveness of the proposed control scheme
    corecore