3 research outputs found

    Weight Priors for Learning Identity Relations

    Full text link
    Learning abstract and systematic relations has been an open issue in neural network learning for over 30 years. It has been shown recently that neural networks do not learn relations based on identity and are unable to generalize well to unseen data. The Relation Based Pattern (RBP) approach has been proposed as a solution for this problem. In this work, we extend RBP by realizing it as a Bayesian prior on network weights to model the identity relations. This weight prior leads to a modified regularization term in otherwise standard network learning. In our experiments, we show that the Bayesian weight priors lead to perfect generalization when learning identity based relations and do not impede general neural network learning. We believe that the approach of creating an inductive bias with weight priors can be extended easily to other forms of relations and will be beneficial for many other learning tasks.Comment: Proceedings of KR2ML @ NeurIPS 2019, Vancouver, Canad

    Relational Weight Priors in Neural Networks for Abstract Pattern Learning and Language Modelling

    Full text link
    Deep neural networks have become the dominant approach in natural language processing (NLP). However, in recent years, it has become apparent that there are shortcomings in systematicity that limit the performance and data efficiency of deep learning in NLP. These shortcomings can be clearly shown in lower-level artificial tasks, mostly on synthetic data. Abstract patterns are the best known examples of a hard problem for neural networks in terms of generalisation to unseen data. They are defined by relations between items, such as equality, rather than their values. It has been argued that these low-level problems demonstrate the inability of neural networks to learn systematically. In this study, we propose Embedded Relation Based Patterns (ERBP) as a novel way to create a relational inductive bias that encourages learning equality and distance-based relations for abstract patterns. ERBP is based on Relation Based Patterns (RBP), but modelled as a Bayesian prior on network weights and implemented as a regularisation term in otherwise standard network learning. ERBP is is easy to integrate into standard neural networks and does not affect their learning capacity. In our experiments, ERBP priors lead to almost perfect generalisation when learning abstract patterns from synthetic noise-free sequences. ERBP also improves natural language models on the word and character level and pitch prediction in melodies with RNN, GRU and LSTM networks. We also find improvements in in the more complex tasks of learning of graph edit distance and compositional sentence entailment. ERBP consistently improves over RBP and over standard networks, showing that it enables abstract pattern learning which contributes to performance in natural language tasks.Comment: 29 page

    A Computational Model of Infant Learning and Reasoning with Probabilities

    Full text link
    Recent experiments reveal that 6- to 12-month-old infants can learn probabilities and reason with them. In this work, we present a novel computational system called Neural Probability Learner and Sampler (NPLS) that learns and reasons with probabilities, providing a computationally sufficient mechanism to explain infant probabilistic learning and inference. In 24 computer simulations, NPLS simulations show how probability distributions can emerge naturally from neural-network learning of event sequences, providing a novel explanation of infant probabilistic learning and reasoning. Three mathematical proofs show how and why NPLS simulates the infant results so accurately. The results are situated in relation to seven other active research lines. This work provides an effective way to integrate Bayesian and neural-network approaches to cognition.Comment: To be published in Psychological Revie
    corecore