737,207 research outputs found

    Neural Networks: Implementations and Applications

    Get PDF
    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering area

    Neural Network Applications

    Get PDF
    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering area

    Neural-Augmented Static Analysis of Android Communication

    Full text link
    We address the problem of discovering communication links between applications in the popular Android mobile operating system, an important problem for security and privacy in Android. Any scalable static analysis in this complex setting is bound to produce an excessive amount of false-positives, rendering it impractical. To improve precision, we propose to augment static analysis with a trained neural-network model that estimates the probability that a communication link truly exists. We describe a neural-network architecture that encodes abstractions of communicating objects in two applications and estimates the probability with which a link indeed exists. At the heart of our architecture are type-directed encoders (TDE), a general framework for elegantly constructing encoders of a compound data type by recursively composing encoders for its constituent types. We evaluate our approach on a large corpus of Android applications, and demonstrate that it achieves very high accuracy. Further, we conduct thorough interpretability studies to understand the internals of the learned neural networks.Comment: Appears in Proceedings of the 2018 ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE

    A Supervised STDP-based Training Algorithm for Living Neural Networks

    Full text link
    Neural networks have shown great potential in many applications like speech recognition, drug discovery, image classification, and object detection. Neural network models are inspired by biological neural networks, but they are optimized to perform machine learning tasks on digital computers. The proposed work explores the possibilities of using living neural networks in vitro as basic computational elements for machine learning applications. A new supervised STDP-based learning algorithm is proposed in this work, which considers neuron engineering constrains. A 74.7% accuracy is achieved on the MNIST benchmark for handwritten digit recognition.Comment: 5 pages, 3 figures, Accepted by ICASSP 201

    Grayscale Image Authentication using Neural Hashing

    Full text link
    Many different approaches for neural network based hash functions have been proposed. Statistical analysis must correlate security of them. This paper proposes novel neural hashing approach for gray scale image authentication. The suggested system is rapid, robust, useful and secure. Proposed hash function generates hash values using neural network one-way property and non-linear techniques. As a result security and performance analysis are performed and satisfying results are achieved. These features are dominant reasons for preferring against traditional ones.Comment: international journal of Natural and Engineering Sciences (NESciences.com) : Image Authentication, Cryptology, Hash Function, Statistical and Security Analysi

    Learning to Extract Coherent Summary via Deep Reinforcement Learning

    Full text link
    Coherence plays a critical role in producing a high-quality summary from a document. In recent years, neural extractive summarization is becoming increasingly attractive. However, most of them ignore the coherence of summaries when extracting sentences. As an effort towards extracting coherent summaries, we propose a neural coherence model to capture the cross-sentence semantic and syntactic coherence patterns. The proposed neural coherence model obviates the need for feature engineering and can be trained in an end-to-end fashion using unlabeled data. Empirical results show that the proposed neural coherence model can efficiently capture the cross-sentence coherence patterns. Using the combined output of the neural coherence model and ROUGE package as the reward, we design a reinforcement learning method to train a proposed neural extractive summarizer which is named Reinforced Neural Extractive Summarization (RNES) model. The RNES model learns to optimize coherence and informative importance of the summary simultaneously. Experimental results show that the proposed RNES outperforms existing baselines and achieves state-of-the-art performance in term of ROUGE on CNN/Daily Mail dataset. The qualitative evaluation indicates that summaries produced by RNES are more coherent and readable.Comment: 8 pages, 1 figure, presented at AAAI-201

    Solving parametric PDE problems with artificial neural networks

    Full text link
    The curse of dimensionality is commonly encountered in numerical partial differential equations (PDE), especially when uncertainties have to be modeled into the equations as random coefficients. However, very often the variability of physical quantities derived from a PDE can be captured by a few features on the space of the coefficient fields. Based on such an observation, we propose using a neural-network (NN) based method to parameterize the physical quantity of interest as a function of input coefficients. The representability of such quantity using a neural-network can be justified by viewing the neural-network as performing time evolution to find the solutions to the PDE. We further demonstrate the simplicity and accuracy of the approach through notable examples of PDEs in engineering and physics.Comment: 17 pages, 4 figures, 2 table
    corecore