737,207 research outputs found
Neural Networks: Implementations and Applications
Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering area
Neural Network Applications
Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering area
Recommended from our members
Composite guidance scaffolds for neural tissue engineering
No abstract available
Neural-Augmented Static Analysis of Android Communication
We address the problem of discovering communication links between
applications in the popular Android mobile operating system, an important
problem for security and privacy in Android. Any scalable static analysis in
this complex setting is bound to produce an excessive amount of
false-positives, rendering it impractical. To improve precision, we propose to
augment static analysis with a trained neural-network model that estimates the
probability that a communication link truly exists. We describe a
neural-network architecture that encodes abstractions of communicating objects
in two applications and estimates the probability with which a link indeed
exists. At the heart of our architecture are type-directed encoders (TDE), a
general framework for elegantly constructing encoders of a compound data type
by recursively composing encoders for its constituent types. We evaluate our
approach on a large corpus of Android applications, and demonstrate that it
achieves very high accuracy. Further, we conduct thorough interpretability
studies to understand the internals of the learned neural networks.Comment: Appears in Proceedings of the 2018 ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE
A Supervised STDP-based Training Algorithm for Living Neural Networks
Neural networks have shown great potential in many applications like speech
recognition, drug discovery, image classification, and object detection. Neural
network models are inspired by biological neural networks, but they are
optimized to perform machine learning tasks on digital computers. The proposed
work explores the possibilities of using living neural networks in vitro as
basic computational elements for machine learning applications. A new
supervised STDP-based learning algorithm is proposed in this work, which
considers neuron engineering constrains. A 74.7% accuracy is achieved on the
MNIST benchmark for handwritten digit recognition.Comment: 5 pages, 3 figures, Accepted by ICASSP 201
Grayscale Image Authentication using Neural Hashing
Many different approaches for neural network based hash functions have been
proposed. Statistical analysis must correlate security of them. This paper
proposes novel neural hashing approach for gray scale image authentication. The
suggested system is rapid, robust, useful and secure. Proposed hash function
generates hash values using neural network one-way property and non-linear
techniques. As a result security and performance analysis are performed and
satisfying results are achieved. These features are dominant reasons for
preferring against traditional ones.Comment: international journal of Natural and Engineering Sciences
(NESciences.com) : Image Authentication, Cryptology, Hash Function,
Statistical and Security Analysi
Learning to Extract Coherent Summary via Deep Reinforcement Learning
Coherence plays a critical role in producing a high-quality summary from a
document. In recent years, neural extractive summarization is becoming
increasingly attractive. However, most of them ignore the coherence of
summaries when extracting sentences. As an effort towards extracting coherent
summaries, we propose a neural coherence model to capture the cross-sentence
semantic and syntactic coherence patterns. The proposed neural coherence model
obviates the need for feature engineering and can be trained in an end-to-end
fashion using unlabeled data. Empirical results show that the proposed neural
coherence model can efficiently capture the cross-sentence coherence patterns.
Using the combined output of the neural coherence model and ROUGE package as
the reward, we design a reinforcement learning method to train a proposed
neural extractive summarizer which is named Reinforced Neural Extractive
Summarization (RNES) model. The RNES model learns to optimize coherence and
informative importance of the summary simultaneously. Experimental results show
that the proposed RNES outperforms existing baselines and achieves
state-of-the-art performance in term of ROUGE on CNN/Daily Mail dataset. The
qualitative evaluation indicates that summaries produced by RNES are more
coherent and readable.Comment: 8 pages, 1 figure, presented at AAAI-201
Solving parametric PDE problems with artificial neural networks
The curse of dimensionality is commonly encountered in numerical partial
differential equations (PDE), especially when uncertainties have to be modeled
into the equations as random coefficients. However, very often the variability
of physical quantities derived from a PDE can be captured by a few features on
the space of the coefficient fields. Based on such an observation, we propose
using a neural-network (NN) based method to parameterize the physical quantity
of interest as a function of input coefficients. The representability of such
quantity using a neural-network can be justified by viewing the neural-network
as performing time evolution to find the solutions to the PDE. We further
demonstrate the simplicity and accuracy of the approach through notable
examples of PDEs in engineering and physics.Comment: 17 pages, 4 figures, 2 table
- …
