106 research outputs found

    Sparsely Aggregated Convolutional Networks

    Full text link
    We explore a key architectural aspect of deep convolutional neural networks: the pattern of internal skip connections used to aggregate outputs of earlier layers for consumption by deeper layers. Such aggregation is critical to facilitate training of very deep networks in an end-to-end manner. This is a primary reason for the widespread adoption of residual networks, which aggregate outputs via cumulative summation. While subsequent works investigate alternative aggregation operations (e.g. concatenation), we focus on an orthogonal question: which outputs to aggregate at a particular point in the network. We propose a new internal connection structure which aggregates only a sparse set of previous outputs at any given depth. Our experiments demonstrate this simple design change offers superior performance with fewer parameters and lower computational requirements. Moreover, we show that sparse aggregation allows networks to scale more robustly to 1000+ layers, thereby opening future avenues for training long-running visual processes.Comment: Accepted to ECCV 201

    CondenseNet: An Efficient DenseNet using Learned Group Convolutions

    Full text link
    Deep neural networks are increasingly used on mobile devices, where computational resources are limited. In this paper we develop CondenseNet, a novel network architecture with unprecedented efficiency. It combines dense connectivity with a novel module called learned group convolution. The dense connectivity facilitates feature re-use in the network, whereas learned group convolutions remove connections between layers for which this feature re-use is superfluous. At test time, our model can be implemented using standard group convolutions, allowing for efficient computation in practice. Our experiments show that CondenseNets are far more efficient than state-of-the-art compact convolutional networks such as MobileNets and ShuffleNets

    Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis

    Full text link
    Deep Neural Networks (DNNs) are becoming an important tool in modern computing applications. Accelerating their training is a major challenge and techniques range from distributed algorithms to low-level circuit design. In this survey, we describe the problem from a theoretical perspective, followed by approaches for its parallelization. We present trends in DNN architectures and the resulting implications on parallelization strategies. We then review and model the different types of concurrency in DNNs: from the single operator, through parallelism in network inference and training, to distributed deep learning. We discuss asynchronous stochastic optimization, distributed system architectures, communication schemes, and neural architecture search. Based on those approaches, we extrapolate potential directions for parallelism in deep learning
    • …
    corecore