42 research outputs found

    Multi-aspect Repetition Suppression and Content Moderation of Large Language Models

    Full text link
    Natural language generation is one of the most impactful fields in NLP, and recent years have witnessed its evolution brought about by large language models (LLMs). As the key instrument for writing assistance applications, they are generally prone to replicating or extending offensive content provided in the input. In low-resource data regime, they can also lead to repetitive outputs (Holtzman et al., 2019) [1]. Usually, offensive content and repetitions are mitigated with post-hoc methods, including n-gram level blocklists, top-k and nucleus sampling. In this paper, we introduce a combination of exact and non-exact repetition suppression using token and sequence level unlikelihood loss, repetition penalty during training, inference, and post-processing respectively. We further explore multi-level unlikelihood loss to the extent that it endows the model with abilities to avoid generating offensive words and phrases from the beginning. Finally, with comprehensive experiments, we demonstrate that our proposed methods work exceptionally in controlling the repetition and content quality of LLM outputs

    Multitask learning in Audio Captioning: a sentence embedding regression loss acts as a regularizer

    Full text link
    In this work, we propose to study the performance of a model trained with a sentence embedding regression loss component for the Automated Audio Captioning task. This task aims to build systems that can describe audio content with a single sentence written in natural language. Most systems are trained with the standard Cross-Entropy loss, which does not take into account the semantic closeness of the sentence. We found that adding a sentence embedding loss term reduces overfitting, but also increased SPIDEr from 0.397 to 0.418 in our first setting on the AudioCaps corpus. When we increased the weight decay value, we found our model to be much closer to the current state-of-the-art methods, with a SPIDEr score up to 0.444 compared to a 0.475 score. Moreover, this model uses eight times less trainable parameters. In this training setting, the sentence embedding loss has no more impact on the model performance

    ColdGANs: Taming Language GANs with Cautious Sampling Strategies

    Full text link
    Training regimes based on Maximum Likelihood Estimation (MLE) suffer from known limitations, often leading to poorly generated text sequences. At the root of these limitations is the mismatch between training and inference, i.e. the so-called exposure bias, exacerbated by considering only the reference texts as correct, while in practice several alternative formulations could be as good. Generative Adversarial Networks (GANs) can mitigate those limitations but the discrete nature of text has hindered their application to language generation: the approaches proposed so far, based on Reinforcement Learning, have been shown to underperform MLE. Departing from previous works, we analyze the exploration step in GANs applied to text generation, and show how classical sampling results in unstable training. We propose to consider alternative exploration strategies in a GAN framework that we name ColdGANs, where we force the sampling to be close to the distribution modes to get smoother learning dynamics. For the first time, to the best of our knowledge, the proposed language GANs compare favorably to MLE, and obtain improvements over the state-of-the-art on three generative tasks, namely unconditional text generation, question generation, and abstractive summarization
    corecore