462 research outputs found

    Learning to Write with Coherence From Negative Examples

    Full text link
    Coherence is one of the critical factors that determine the quality of writing. We propose writing relevance (WR) training method for neural encoder-decoder natural language generation (NLG) models which improves coherence of the continuation by leveraging negative examples. WR loss regresses the vector representation of the context and generated sentence toward positive continuation by contrasting it with the negatives. We compare our approach with Unlikelihood (UL) training in a text continuation task on commonsense natural language inference (NLI) corpora to show which method better models the coherence by avoiding unlikely continuations. The preference of our approach in human evaluation shows the efficacy of our method in improving coherence.Comment: 4+1 pages, 4 figures, 2 tables. ICASSP 2022 rejecte

    Multi-aspect Repetition Suppression and Content Moderation of Large Language Models

    Full text link
    Natural language generation is one of the most impactful fields in NLP, and recent years have witnessed its evolution brought about by large language models (LLMs). As the key instrument for writing assistance applications, they are generally prone to replicating or extending offensive content provided in the input. In low-resource data regime, they can also lead to repetitive outputs (Holtzman et al., 2019) [1]. Usually, offensive content and repetitions are mitigated with post-hoc methods, including n-gram level blocklists, top-k and nucleus sampling. In this paper, we introduce a combination of exact and non-exact repetition suppression using token and sequence level unlikelihood loss, repetition penalty during training, inference, and post-processing respectively. We further explore multi-level unlikelihood loss to the extent that it endows the model with abilities to avoid generating offensive words and phrases from the beginning. Finally, with comprehensive experiments, we demonstrate that our proposed methods work exceptionally in controlling the repetition and content quality of LLM outputs

    Token Imbalance Adaptation for Radiology Report Generation

    Full text link
    Imbalanced token distributions naturally exist in text documents, leading neural language models to overfit on frequent tokens. The token imbalance may dampen the robustness of radiology report generators, as complex medical terms appear less frequently but reflect more medical information. In this study, we demonstrate how current state-of-the-art models fail to generate infrequent tokens on two standard benchmark datasets (IU X-RAY and MIMIC-CXR) of radiology report generation. % However, no prior study has proposed methods to adapt infrequent tokens for text generators feeding with medical images. To solve the challenge, we propose the \textbf{T}oken \textbf{Im}balance Adapt\textbf{er} (\textit{TIMER}), aiming to improve generation robustness on infrequent tokens. The model automatically leverages token imbalance by an unlikelihood loss and dynamically optimizes generation processes to augment infrequent tokens. We compare our approach with multiple state-of-the-art methods on the two benchmarks. Experiments demonstrate the effectiveness of our approach in enhancing model robustness overall and infrequent tokens. Our ablation analysis shows that our reinforcement learning method has a major effect in adapting token imbalance for radiology report generation.Comment: Accepted by CHIL202

    Unlikelihood Tuning on Negative Samples Amazingly Improves Zero-Shot Translation

    Full text link
    Zero-shot translation (ZST), which is generally based on a multilingual neural machine translation model, aims to translate between unseen language pairs in training data. The common practice to guide the zero-shot language mapping during inference is to deliberately insert the source and target language IDs, e.g., for English and for German. Recent studies have shown that language IDs sometimes fail to navigate the ZST task, making them suffer from the off-target problem (non-target language words exist in the generated translation) and, therefore, difficult to apply the current multilingual translation model to a broad range of zero-shot language scenarios. To understand when and why the navigation capabilities of language IDs are weakened, we compare two extreme decoder input cases in the ZST directions: Off-Target (OFF) and On-Target (ON) cases. By contrastively visualizing the contextual word representations (CWRs) of these cases with teacher forcing, we show that 1) the CWRs of different languages are effectively distributed in separate regions when the sentence and ID are matched (ON setting), and 2) if the sentence and ID are unmatched (OFF setting), the CWRs of different languages are chaotically distributed. Our analyses suggest that although they work well in ideal ON settings, language IDs become fragile and lose their navigation ability when faced with off-target tokens, which commonly exist during inference but are rare in training scenarios. In response, we employ unlikelihood tuning on the negative (OFF) samples to minimize their probability such that the language IDs can discriminate between the on- and off-target tokens during training. Experiments spanning 40 ZST directions show that our method reduces the off-target ratio by -48.0% on average, leading to a +9.1 BLEU improvement with only an extra +0.3% tuning cost
    • …
    corecore