25 research outputs found

    Entraining and copying of temporal correlations in dissociated cultured neurons

    Get PDF
    Here we used multi-electrode array technology to examine the encoding of temporal information in dissociated hippocampal networks. We demonstrate that two connected populations of neurons can be trained to encode a defined time interval, and this memory trace persists for several hours. We also investigate whether the spontaneous firing activity of a trained network, can act as a template for copying the encoded time interval to a naive network. Such findings are of general significance for understanding fundamental principles of information storage and replicatio

    Accelerate Multi-Agent Reinforcement Learning in Zero-Sum Games with Subgame Curriculum Learning

    Full text link
    Learning Nash equilibrium (NE) in complex zero-sum games with multi-agent reinforcement learning (MARL) can be extremely computationally expensive. Curriculum learning is an effective way to accelerate learning, but an under-explored dimension for generating a curriculum is the difficulty-to-learn of the subgames -- games induced by starting from a specific state. In this work, we present a novel subgame curriculum learning framework for zero-sum games. It adopts an adaptive initial state distribution by resetting agents to some previously visited states where they can quickly learn to improve performance. Building upon this framework, we derive a subgame selection metric that approximates the squared distance to NE values and further adopt a particle-based state sampler for subgame generation. Integrating these techniques leads to our new algorithm, Subgame Automatic Curriculum Learning (SACL), which is a realization of the subgame curriculum learning framework. SACL can be combined with any MARL algorithm such as MAPPO. Experiments in the particle-world environment and Google Research Football environment show SACL produces much stronger policies than baselines. In the challenging hide-and-seek quadrant environment, SACL produces all four emergent stages and uses only half the samples of MAPPO with self-play. The project website is at https://sites.google.com/view/sacl-rl

    Conjugate Natural Selection: Fisher-Rao Natural Gradient Descent Optimally Approximates Evolutionary Dynamics and Continuous Bayesian Inference

    Full text link
    Rather than refining individual candidate solutions for a general non-convex optimization problem, by analogy to evolution, we consider minimizing the average loss for a parametric distribution over hypotheses. In this setting, we prove that Fisher-Rao natural gradient descent (FR-NGD) optimally approximates the continuous-time replicator equation (an essential model of evolutionary dynamics) by minimizing the mean-squared error for the relative fitness of competing hypotheses. We term this finding "conjugate natural selection" and demonstrate its utility by numerically solving an example non-convex optimization problem over a continuous strategy space. Next, by developing known connections between discrete-time replicator dynamics and Bayes's rule, we show that when absolute fitness corresponds to the negative KL-divergence of a hypothesis's predictions from actual observations, FR-NGD provides the optimal approximation of continuous Bayesian inference. We use this result to demonstrate a novel method for estimating the parameters of stochastic processes.Comment: 13 pages, 3 figure
    corecore