27 research outputs found

    Performance Evaluation of Channel Decoding With Deep Neural Networks

    Full text link
    With the demand of high data rate and low latency in fifth generation (5G), deep neural network decoder (NND) has become a promising candidate due to its capability of one-shot decoding and parallel computing. In this paper, three types of NND, i.e., multi-layer perceptron (MLP), convolution neural network (CNN) and recurrent neural network (RNN), are proposed with the same parameter magnitude. The performance of these deep neural networks are evaluated through extensive simulation. Numerical results show that RNN has the best decoding performance, yet at the price of the highest computational overhead. Moreover, we find there exists a saturation length for each type of neural network, which is caused by their restricted learning abilities.Comment: 6 pages, 11 figures, Latex; typos corrected; IEEE ICC 2018 to appea

    Non-Linear Digital Self-Interference Cancellation for In-Band Full-Duplex Radios Using Neural Networks

    Full text link
    Full-duplex systems require very strong self-interference cancellation in order to operate correctly and a significant part of the self-interference signal is due to non-linear effects created by various transceiver impairments. As such, linear cancellation alone is usually not sufficient and sophisticated non-linear cancellation algorithms have been proposed in the literature. In this work, we investigate the use of a neural network as an alternative to the traditional non-linear cancellation method that is based on polynomial basis functions. Measurement results from a full-duplex testbed demonstrate that a small and simple feed-forward neural network canceler works exceptionally well, as it can match the performance of the polynomial non-linear canceler with significantly lower computational complexity.Comment: Presented at the IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) 201

    Near Maximum Likelihood Decoding with Deep Learning

    Full text link
    A novel and efficient neural decoder algorithm is proposed. The proposed decoder is based on the neural Belief Propagation algorithm and the Automorphism Group. By combining neural belief propagation with permutations from the Automorphism Group we achieve near maximum likelihood performance for High Density Parity Check codes. Moreover, the proposed decoder significantly improves the decoding complexity, compared to our earlier work on the topic. We also investigate the training process and show how it can be accelerated. Simulations of the hessian and the condition number show why the learning process is accelerated. We demonstrate the decoding algorithm for various linear block codes of length up to 63 bits.Comment: The paper will be presented at IZS 201

    Rate Compatible LDPC Neural Decoding Network: A Multi-Task Learning Approach

    Full text link
    Deep learning based decoding networks have shown significant improvement in decoding LDPC codes, but the neural decoders are limited by rate-matching operations such as puncturing or extending, thus needing to train multiple decoders with different code rates for a variety of channel conditions. In this correspondence, we propose a Multi-Task Learning based rate-compatible LDPC ecoding network, which utilizes the structure of raptor-like LDPC codes and can deal with multiple code rates. In the proposed network, different portions of parameters are activated to deal with distinct code rates, which leads to parameter sharing among tasks. Numerical experiments demonstrate the effectiveness of the proposed method. Training the specially designed network under multiple code rates makes the decoder compatible with multiple code rates without sacrificing frame error rate performance
    corecore