17,850 research outputs found

    Application of Statistical and Artificial Intelligence Techniques for Medium-Term Electrical Energy Forecasting: A Case Study for a Regional Hospital

    Get PDF
    Electrical energy forecasting is crucial for efficient, reliable, and economic operations of hospitals due to serving 365 days a year, 24/7, and they require round-the-clock energy. An accurate prediction of energy consumption is particularly required for energy management, maintenance scheduling, and future renewable investment planning of large facilities. The main objective of this study is to forecast electrical energy demand by performing and comparing well-known techniques, which are frequently applied to short-term electrical energy forecasting problem in the literature, such as multiple linear regression as a statistical technique and artificial intelligence techniques including artificial neural networks containing multilayer perceptron neural networks and radial basis function networks, and support vector machines through a case study of a regional hospital in the medium-term horizon. In this study, a state-of-the-art literature review of medium-term electrical energy forecasting, data set information, fundamentals of statistical and artificial intelligence techniques, analyses for aforementioned methodologies, and the obtained results are described meticulously. Consequently, support vector machines model with a Gaussian kernel has the best validation performance, and the study revealed that seasonality has a dominant influence on forecasting performance. Hence heating, ventilation, and air-conditioning systems cover the major part of electrical energy consumption of the regional hospital. Besides historical electrical energy consumption, outdoor mean temperature and calendar variables play a significant role in achieving accurate results. Furthermore, the study also unveiled that the number of patients is steady over the years with only small deviations and have no significant influence on medium-term electrical energy forecasting

    Forecasting Building Energy Consumption with Deep Learning: A Sequence to Sequence Approach

    Get PDF
    Energy Consumption has been continuously increasing due to the rapid expansion of high-density cities, and growth in the industrial and commercial sectors. To reduce the negative impact on the environment and improve sustainability, it is crucial to efficiently manage energy consumption. Internet of Things (IoT) devices, including widely used smart meters, have created possibilities for energy monitoring as well as for sensor based energy forecasting. Machine learning algorithms commonly used for energy forecasting such as feedforward neural networks are not well-suited for interpreting the time dimensionality of a signal. Consequently, this paper uses Recurrent Neural Networks (RNN) to capture time dependencies and proposes a novel energy load forecasting methodology based on sample generation and Sequence-to-Sequence (S2S) deep learning algorithm. The S2S architecture that is commonly used for language translation was adapted for energy load forecasting. Experiments focus on Gated Recurrent Unit (GRU) based S2S models and Long Short-Term Memory (LSTM) based S2S models. All models were trained and tested on one building-level electrical consumption dataset, with five-minute incremental data. Results showed that, on average, the GRU S2S models outperformed LSTM S2S, RNN S2S, and Deep Neural Network models, for short, medium, and long-term forecasting lengths

    Forecasting Energy Consumption using Sequence to Sequence Attention models

    Get PDF
    To combat negative environmental conditions, reduce operating costs, and identify energy savings opportunities, it is essential to efficiently manage energy consumption. Internet of Things (IoT) devices, including widely-used smart meters, have created possibilities for sensor based energy forecasting. Machine learning algorithms commonly used for energy forecasting, such as FeedForward Neural Networks, are not well-suited for interpreting the time dimensionality of a signal. Consequently, this thesis applies Sequence-to-Sequence (S2S) Recurrent Neural Networks (RNNs) with attention for electrical load forecasting. The S2S and S2S attention architectures commonly used for neural machine translation are adapted for energy forecasting. An RNN enables capturing time dependencies present in the load data, while the S2S RNN model strengthens consecutive sequence prediction by combining two RNNs: encoder and decoder. Adding the attention mechanism to these S2S RNNs alleviates the burden of connecting the encoder and decoder. Presented experiments compare a regular S2S model and four S2S attention models with two baseline models, the conventional Non-S2S RNN and a Deep Neural Network (DNN). Furthermore, each RNN model was evaluated with three different RNN-cells: Vanilla RNN, Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM) cell. All models were trained and tested on one building-level electrical load dataset, with five-minute incremental data. Results showed that the S2S Bahdanau et al. attention model was the dominant model as it outperformed all other models for nearly all forecasting lengths

    The Daily and Hourly Energy Consumption and Load Forecasting Using Artificial Neural Network Method: A Case Study Using a Set of 93 Households in Portugal

    Get PDF
    AbstractIt is important to understand and forecast a typical or a particularly household daily consumption in order to design and size suitable renewable energy systems and energy storage. In this research for Short Term Load Forecasting (STLF) it has been used Artificial Neural Networks (ANN) and, despite the consumption unpredictability, it has been shown the possibility to forecast the electricity consumption of a household with certainty. The ANNs are recognized to be a potential methodology for modeling hourly and daily energy consumption and load forecasting. Input variables such as apartment area, numbers of occupants, electrical appliance consumption and Boolean inputs as hourly meter system were considered. Furthermore, the investigation carried out aims to define an ANN architecture and a training algorithm in order to achieve a robust model to be used in forecasting energy consumption in a typical household. It was observed that a feed-forward ANN and the Levenberg-Marquardt algorithm provided a good performance. For this research it was used a database with consumption records, logged in 93 real households, in Lisbon, Portugal, between February 2000 and July 2001, including both weekdays and weekend. The results show that the ANN approach provides a reliable model for forecasting household electric energy consumption and load profile

    Application of Deep Learning Long Short-Term Memory in Energy Demand Forecasting

    Full text link
    The smart metering infrastructure has changed how electricity is measured in both residential and industrial application. The large amount of data collected by smart meter per day provides a huge potential for analytics to support the operation of a smart grid, an example of which is energy demand forecasting. Short term energy forecasting can be used by utilities to assess if any forecasted peak energy demand would have an adverse effect on the power system transmission and distribution infrastructure. It can also help in load scheduling and demand side management. Many techniques have been proposed to forecast time series including Support Vector Machine, Artificial Neural Network and Deep Learning. In this work we use Long Short Term Memory architecture to forecast 3-day ahead energy demand across each month in the year. The results show that 3-day ahead demand can be accurately forecasted with a Mean Absolute Percentage Error of 3.15%. In addition to that, the paper proposes way to quantify the time as a feature to be used in the training phase which is shown to affect the network performance

    Data Improving in Time Series Using ARX and ANN Models

    Get PDF
    Anomalous data can negatively impact energy forecasting by causing model parameters to be incorrectly estimated. This paper presents two approaches for the detection and imputation of anomalies in time series data. Autoregressive with exogenous inputs (ARX) and artificial neural network (ANN) models are used to extract the characteristics of time series. Anomalies are detected by performing hypothesis testing on the extrema of the residuals, and the anomalous data points are imputed using the ARX and ANN models. Because the anomalies affect the model coefficients, the data cleaning process is performed iteratively. The models are re-learned on “cleaner” data after an anomaly is imputed. The anomalous data are reimputed to each iteration using the updated ARX and ANN models. The ARX and ANN data cleaning models are evaluated on natural gas time series data. This paper demonstrates that the proposed approaches are able to identify and impute anomalous data points. Forecasting models learned on the unclean data and the cleaned data are tested on an uncleaned out-of-sample dataset. The forecasting model learned on the cleaned data outperforms the model learned on the unclean data with 1.67% improvement in the mean absolute percentage errors and a 32.8% improvement in the root mean squared error. Existing challenges include correctly identifying specific types of anomalies such as negative flows
    corecore