3,846 research outputs found

    Online Visual Robot Tracking and Identification using Deep LSTM Networks

    Full text link
    Collaborative robots working on a common task are necessary for many applications. One of the challenges for achieving collaboration in a team of robots is mutual tracking and identification. We present a novel pipeline for online visionbased detection, tracking and identification of robots with a known and identical appearance. Our method runs in realtime on the limited hardware of the observer robot. Unlike previous works addressing robot tracking and identification, we use a data-driven approach based on recurrent neural networks to learn relations between sequential inputs and outputs. We formulate the data association problem as multiple classification problems. A deep LSTM network was trained on a simulated dataset and fine-tuned on small set of real data. Experiments on two challenging datasets, one synthetic and one real, which include long-term occlusions, show promising results.Comment: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada, 2017. IROS RoboCup Best Paper Awar

    Using Monte Carlo Search With Data Aggregation to Improve Robot Soccer Policies

    Full text link
    RoboCup soccer competitions are considered among the most challenging multi-robot adversarial environments, due to their high dynamism and the partial observability of the environment. In this paper we introduce a method based on a combination of Monte Carlo search and data aggregation (MCSDA) to adapt discrete-action soccer policies for a defender robot to the strategy of the opponent team. By exploiting a simple representation of the domain, a supervised learning algorithm is trained over an initial collection of data consisting of several simulations of human expert policies. Monte Carlo policy rollouts are then generated and aggregated to previous data to improve the learned policy over multiple epochs and games. The proposed approach has been extensively tested both on a soccer-dedicated simulator and on real robots. Using this method, our learning robot soccer team achieves an improvement in ball interceptions, as well as a reduction in the number of opponents' goals. Together with a better performance, an overall more efficient positioning of the whole team within the field is achieved

    Comparing Computing Platforms for Deep Learning on a Humanoid Robot

    Full text link
    The goal of this study is to test two different computing platforms with respect to their suitability for running deep networks as part of a humanoid robot software system. One of the platforms is the CPU-centered Intel NUC7i7BNH and the other is a NVIDIA Jetson TX2 system that puts more emphasis on GPU processing. The experiments addressed a number of benchmarking tasks including pedestrian detection using deep neural networks. Some of the results were unexpected but demonstrate that platforms exhibit both advantages and disadvantages when taking computational performance and electrical power requirements of such a system into account.Comment: 12 pages, 5 figure
    • …
    corecore