59,105 research outputs found
Building Machines That Learn and Think Like People
Recent progress in artificial intelligence (AI) has renewed interest in
building systems that learn and think like people. Many advances have come from
using deep neural networks trained end-to-end in tasks such as object
recognition, video games, and board games, achieving performance that equals or
even beats humans in some respects. Despite their biological inspiration and
performance achievements, these systems differ from human intelligence in
crucial ways. We review progress in cognitive science suggesting that truly
human-like learning and thinking machines will have to reach beyond current
engineering trends in both what they learn, and how they learn it.
Specifically, we argue that these machines should (a) build causal models of
the world that support explanation and understanding, rather than merely
solving pattern recognition problems; (b) ground learning in intuitive theories
of physics and psychology, to support and enrich the knowledge that is learned;
and (c) harness compositionality and learning-to-learn to rapidly acquire and
generalize knowledge to new tasks and situations. We suggest concrete
challenges and promising routes towards these goals that can combine the
strengths of recent neural network advances with more structured cognitive
models.Comment: In press at Behavioral and Brain Sciences. Open call for commentary
  proposals (until Nov. 22, 2016).
  https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/information/calls-for-commentary/open-calls-for-commentar
Learning backward induction: a neural network agent approach
This paper addresses the question of whether neural networks (NNs), a realistic cognitive model of human information processing, can learn to backward induce in a two-stage game with a unique subgame-perfect Nash equilibrium. The NNs were found to predict the Nash equilibrium approximately 70% of the time in new games. Similarly to humans, the neural network agents are also found to suffer from subgame and truncation inconsistency, supporting the contention that they are appropriate models of general learning in humans. The agents were found to behave in a bounded rational manner as a result of the endogenous emergence of decision heuristics. In particular a very simple heuristic socialmax, that chooses the cell with the highest social payoff explains their behavior approximately 60% of the time, whereas the ownmax heuristic that simply chooses the cell with the maximum payoff for that agent fares worse explaining behavior roughly 38%, albeit still significantly better than chance. These two heuristics were found to be ecologically valid for the backward induction problem as they predicted the Nash equilibrium in 67% and 50% of the games respectively. Compared to various standard classification algorithms, the NNs were found to be only slightly more accurate than standard discriminant analyses. However, the latter do not model the dynamic learning process and have an ad hoc postulated functional form. In contrast, a NN agent’s behavior evolves with experience and is capable of taking on any functional form according to the universal approximation theorem.
Applied Computational Intelligence for finance and economics
This article introduces some relevant research works on computational intelligence applied to finance and economics. The objective is to offer an appropriate context and a starting point for those who are new to computational intelligence in finance and economics and to give an overview of the most recent works. A classification with five different main areas is presented. Those areas are related with different applications of the most modern computational intelligence techniques showing a new perspective for approaching finance and economics problems. Each research area is described with several works and applications. Finally, a review of the research works selected for this special issue is given.Publicad
Deep Learning: Our Miraculous Year 1990-1991
In 2020, we will celebrate that many of the basic ideas behind the deep
learning revolution were published three decades ago within fewer than 12
months in our "Annus Mirabilis" or "Miraculous Year" 1990-1991 at TU Munich.
Back then, few people were interested, but a quarter century later, neural
networks based on these ideas were on over 3 billion devices such as
smartphones, and used many billions of times per day, consuming a significant
fraction of the world's compute.Comment: 37 pages, 188 references, based on work of 4 Oct 201
Dynamics of Internal Models in Game Players
A new approach for the study of social games and communications is proposed.
Games are simulated between cognitive players who build the opponent's internal
model and decide their next strategy from predictions based on the model. In
this paper, internal models are constructed by the recurrent neural network
(RNN), and the iterated prisoner's dilemma game is performed. The RNN allows us
to express the internal model in a geometrical shape. The complicated
transients of actions are observed before the stable mutually defecting
equilibrium is reached. During the transients, the model shape also becomes
complicated and often experiences chaotic changes. These new chaotic dynamics
of internal models reflect the dynamical and high-dimensional rugged landscape
of the internal model space.Comment: 19 pages, 6 figure
Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions
Generative Adversarial Networks (GANs) is a novel class of deep generative
models which has recently gained significant attention. GANs learns complex and
high-dimensional distributions implicitly over images, audio, and data.
However, there exists major challenges in training of GANs, i.e., mode
collapse, non-convergence and instability, due to inappropriate design of
network architecture, use of objective function and selection of optimization
algorithm. Recently, to address these challenges, several solutions for better
design and optimization of GANs have been investigated based on techniques of
re-engineered network architectures, new objective functions and alternative
optimization algorithms. To the best of our knowledge, there is no existing
survey that has particularly focused on broad and systematic developments of
these solutions. In this study, we perform a comprehensive survey of the
advancements in GANs design and optimization solutions proposed to handle GANs
challenges. We first identify key research issues within each design and
optimization technique and then propose a new taxonomy to structure solutions
by key research issues. In accordance with the taxonomy, we provide a detailed
discussion on different GANs variants proposed within each solution and their
relationships. Finally, based on the insights gained, we present the promising
research directions in this rapidly growing field.Comment: 42 pages, Figure 13, Table 
- …
