1,271,263 research outputs found

    Contour detection by CORF operator

    Get PDF
    We propose a contour operator, called CORF, inspired by the properties of simple cells in visual cortex. It combines, by a weighted geometric mean, the blurred responses of difference-of-Gaussian operators that model cells in the lateral geniculate nucleus (LGN). An operator that has gained particular popularity as a computational model of a simple cell is based on a family of Gabor Functions (GFs). However, the GF operator short-cuts the LGN, and its effectiveness in contour detection tasks, which is assumed to be the primary biological role of simple cells, has never been compared with the effectiveness of alternative operators. We compare the performances of the CORF and the GF operators using the RuG and the Berkeley data sets of natural scenes with associated ground truths. The proposed CORF operator outperforms the GF operator (RuG: t(39)=4.39, p<10−4 and Berkeley: t(499)=4.95, p<10−6).peer-reviewe

    Analog Neural Networks as Decoders

    Get PDF
    Analog neural networks with feedback can be used to implement l(Winner-Take-All (KWTA) networks. In turn, KWTA networks can be used as decoders of a class of nonlinear error-correcting codes. By interconnecting such KWTA networks, we can construct decoders capable of decoding more powerful codes. We consider several families of interconnected KWTA networks, analyze their performance in terms of coding theory metrics, and consider the feasibility of embedding such networks in VLSI technologies

    A new neural network technique for the design of multilayered microwave shielded bandpass filters

    Get PDF
    In this work, we propose a novel technique based on neural networks, for the design of microwave filters in shielded printed technology. The technique uses radial basis function neural networks to represent the non linear relations between the quality factors and coupling coefficients, with the geometrical dimensions of the resonators. The radial basis function neural networks are employed for the first time in the design task of shielded printed filters, and permit a fast and precise operation with only a limited set of training data. Thanks to a new cascade configuration, a set of two neural networks provide the dimensions of the complete filter in a fast and accurate way. To improve the calculation of the geometrical dimensions, the neural networks can take as inputs both electrical parameters and physical dimensions computed by other neural networks. The neural network technique is combined with gradient based optimization methods to further improve the response of the filters. Results are presented to demonstrate the usefulness of the proposed technique for the design of practical microwave printed coupled line and hairpin filters

    Optimal modularity and memory capacity of neural reservoirs

    Full text link
    The neural network is a powerful computing framework that has been exploited by biological evolution and by humans for solving diverse problems. Although the computational capabilities of neural networks are determined by their structure, the current understanding of the relationships between a neural network's architecture and function is still primitive. Here we reveal that neural network's modular architecture plays a vital role in determining the neural dynamics and memory performance of the network of threshold neurons. In particular, we demonstrate that there exists an optimal modularity for memory performance, where a balance between local cohesion and global connectivity is established, allowing optimally modular networks to remember longer. Our results suggest that insights from dynamical analysis of neural networks and information spreading processes can be leveraged to better design neural networks and may shed light on the brain's modular organization

    A Digital Neuromorphic Architecture Efficiently Facilitating Complex Synaptic Response Functions Applied to Liquid State Machines

    Full text link
    Information in neural networks is represented as weighted connections, or synapses, between neurons. This poses a problem as the primary computational bottleneck for neural networks is the vector-matrix multiply when inputs are multiplied by the neural network weights. Conventional processing architectures are not well suited for simulating neural networks, often requiring large amounts of energy and time. Additionally, synapses in biological neural networks are not binary connections, but exhibit a nonlinear response function as neurotransmitters are emitted and diffuse between neurons. Inspired by neuroscience principles, we present a digital neuromorphic architecture, the Spiking Temporal Processing Unit (STPU), capable of modeling arbitrary complex synaptic response functions without requiring additional hardware components. We consider the paradigm of spiking neurons with temporally coded information as opposed to non-spiking rate coded neurons used in most neural networks. In this paradigm we examine liquid state machines applied to speech recognition and show how a liquid state machine with temporal dynamics maps onto the STPU-demonstrating the flexibility and efficiency of the STPU for instantiating neural algorithms.Comment: 8 pages, 4 Figures, Preprint of 2017 IJCN
    corecore