1,633 research outputs found

    Spectrum Monitoring for Radar Bands using Deep Convolutional Neural Networks

    Full text link
    In this paper, we present a spectrum monitoring framework for the detection of radar signals in spectrum sharing scenarios. The core of our framework is a deep convolutional neural network (CNN) model that enables Measurement Capable Devices to identify the presence of radar signals in the radio spectrum, even when these signals are overlapped with other sources of interference, such as commercial LTE and WLAN. We collected a large dataset of RF measurements, which include the transmissions of multiple radar pulse waveforms, downlink LTE, WLAN, and thermal noise. We propose a pre-processing data representation that leverages the amplitude and phase shifts of the collected samples. This representation allows our CNN model to achieve a classification accuracy of 99.6% on our testing dataset. The trained CNN model is then tested under various SNR values, outperforming other models, such as spectrogram-based CNN models.Comment: 7 pages, 10 figures, conferenc

    ORACLE: Optimized Radio clAssification through Convolutional neuraL nEtworks

    Full text link
    This paper describes the architecture and performance of ORACLE, an approach for detecting a unique radio from a large pool of bit-similar devices (same hardware, protocol, physical address, MAC ID) using only IQ samples at the physical layer. ORACLE trains a convolutional neural network (CNN) that balances computational time and accuracy, showing 99\% classification accuracy for a 16-node USRP X310 SDR testbed and an external database of >>100 COTS WiFi devices. Our work makes the following contributions: (i) it studies the hardware-centric features within the transmitter chain that causes IQ sample variations; (ii) for an idealized static channel environment, it proposes a CNN architecture requiring only raw IQ samples accessible at the front-end, without channel estimation or prior knowledge of the communication protocol; (iii) for dynamic channels, it demonstrates a principled method of feedback-driven transmitter-side modifications that uses channel estimation at the receiver to increase differentiability for the CNN classifier. The key innovation here is to intentionally introduce controlled imperfections on the transmitter side through software directives, while minimizing the change in bit error rate. Unlike previous work that imposes constant environmental conditions, ORACLE adopts the `train once deploy anywhere' paradigm with near-perfect device classification accuracy.Comment: Accepted in IEEE INFOCOM 2019, Paris, France, May 201

    SAIFE: Unsupervised Wireless Spectrum Anomaly Detection with Interpretable Features

    Full text link
    Detecting anomalous behavior in wireless spectrum is a demanding task due to the sheer complexity of the electromagnetic spectrum use. Wireless spectrum anomalies can take a wide range of forms from the presence of an unwanted signal in a licensed band to the absence of an expected signal, which makes manual labeling of anomalies difficult and suboptimal. We present, Spectrum Anomaly Detector with Interpretable FEatures (SAIFE), an Adversarial Autoencoder (AAE) based anomaly detector for wireless spectrum anomaly detection using Power Spectral Density (PSD) data which achieves good anomaly detection and localization in an unsupervised setting. In addition, we investigate the model's capabilities to learn interpretable features such as signal bandwidth, class and center frequency in a semi-supervised fashion. Along with anomaly detection the model exhibits promising results for lossy PSD data compression up to 120X and semisupervised signal classification accuracy close to 100% on three datasets just using 20% labeled samples. Finally the model is tested on data from one of the distributed Electrosense sensors over a long term of 500 hours showing its anomaly detection capabilities.Comment: Copyright IEEE, Accepted for DySPAN 201

    The Importance of Being Earnest: Performance of Modulation Classification for Real RF Signals

    Full text link
    Digital modulation classification (DMC) can be highly valuable for equipping radios with increased spectrum awareness in complex emerging wireless networks. However, as the existing literature is overwhelmingly based on theoretical or simulation results, it is unclear how well DMC performs in practice. In this paper we study the performance of DMC in real-world wireless networks, using an extensive RF signal dataset of 250,000 over-the-air transmissions with heterogeneous transceiver hardware and co-channel interference. Our results show that DMC can achieve a high classification accuracy even under the challenging real-world conditions of modulated co-channel interference and low-grade hardware. However, this only holds if the training dataset fully captures the variety of interference and hardware types in the real radio environment; otherwise, the DMC performance deteriorates significantly. Our work has two important engineering implications. First, it shows that it is not straightforward to exchange learned classifier models among dissimilar radio environments and devices in practice. Second, our analysis suggests that the key missing link for real-world deployment of DMC is designing signal features that generalize well to diverse wireless network scenarios. We are making our RF signal dataset publicly available as a step towards a unified framework for realistic DMC evaluation.Comment: published in DySPAN 201

    Deep SR-ITM: Joint Learning of Super-Resolution and Inverse Tone-Mapping for 4K UHD HDR Applications

    Full text link
    Recent modern displays are now able to render high dynamic range (HDR), high resolution (HR) videos of up to 8K UHD (Ultra High Definition). Consequently, UHD HDR broadcasting and streaming have emerged as high quality premium services. However, due to the lack of original UHD HDR video content, appropriate conversion technologies are urgently needed to transform the legacy low resolution (LR) standard dynamic range (SDR) videos into UHD HDR versions. In this paper, we propose a joint super-resolution (SR) and inverse tone-mapping (ITM) framework, called Deep SR-ITM, which learns the direct mapping from LR SDR video to their HR HDR version. Joint SR and ITM is an intricate task, where high frequency details must be restored for SR, jointly with the local contrast, for ITM. Our network is able to restore fine details by decomposing the input image and focusing on the separate base (low frequency) and detail (high frequency) layers. Moreover, the proposed modulation blocks apply location-variant operations to enhance local contrast. The Deep SR-ITM shows good subjective quality with increased contrast and details, outperforming the previous joint SR-ITM method.Comment: Accepted at ICCV 2019 (Oral

    LinksIQ: Robust and Efficient Modulation Recognition with Imperfect Spectrum Scans

    Full text link
    While critical for the practical progress of spectrum sharing, modulation recognition has so far been investigated under unrealistic assumptions: (i) a transmitter's bandwidth must be scanned alone and in full, (ii) prior knowledge of the technology must be available and (iii) a transmitter must be trustworthy. In reality these assumptions cannot be readily met, as a transmitter's bandwidth may only be scanned intermittently, partially, or alongside other transmitters, and modulation obfuscation may be introduced by short-lived scans or malicious activity. This paper presents LinksIQ, which bridges the gap between real-world spectrum sensing and the growing body of modrec methods designed under simplifying assumptions. Our key insight is that ordered IQ samples form distinctive patterns across modulations, which persist even with scan deficiencies. We mine these patterns through a Fisher Kernel framework and employ lightweight linear support vector machine for modulation classification. LinksIQ is robust to noise, scan partiality and data biases without utilizing prior knowledge of transmitter technology. Its accuracy consistently outperforms baselines in both simulated and real traces. We evaluate LinksIQ performance in a testbed using two popular SDR platforms, RTL-SDR and USRP. We demonstrate high detection accuracy (i.e. 0.74) even with a $20 RTL-SDR scanning at 50% transmitter overlap. This constitutes an average of 43% improvement over existing counterparts employed on RTL-SDR scans. We also explore the effects of platform-aware classifier training and discuss implications on real-world modrec system design. Our results demonstrate the feasibility of low-cost transmitter fingerprinting at scale

    DSIC: Deep Learning based Self-Interference Cancellation for In-Band Full Duplex Wireless

    Full text link
    In-band full duplex wireless is of utmost interest to future wireless communication and networking due to great potentials of spectrum efficiency. IBFD wireless, however, is throttled by its key challenge, namely self-interference. Therefore, effective self-interference cancellation is the key to enable IBFD wireless. This paper proposes a real-time non-linear self-interference cancellation solution based on deep learning. In this solution, a self-interference channel is modeled by a deep neural network (DNN). Synchronized self-interference channel data is first collected to train the DNN of the self-interference channel. Afterwards, the trained DNN is used to cancel the self-interference at a wireless node. This solution has been implemented on a USRP SDR testbed and evaluated in real world in multiple scenarios with various modulations in transmitting information including numbers, texts as well as images. It results in the performance of 17dB in digital cancellation, which is very close to the self-interference power and nearly cancels the self-interference at a SDR node in the testbed. The solution yields an average of 8.5% bit error rate (BER) over many scenarios and different modulation schemes.Comment: 7 page

    Distributed Deep Learning Models for Wireless Signal Classification with Low-Cost Spectrum Sensors

    Full text link
    This paper looks into the technology classification problem for a distributed wireless spectrum sensing network. First, a new data-driven model for Automatic Modulation Classification (AMC) based on long short term memory (LSTM) is proposed. The model learns from the time domain amplitude and phase information of the modulation schemes present in the training data without requiring expert features like higher order cyclic moments. Analyses show that the proposed model yields an average classification accuracy of close to 90% at varying SNR conditions ranging from 0dB to 20dB. Further, we explore the utility of this LSTM model for a variable symbol rate scenario. We show that a LSTM based model can learn good representations of variable length time domain sequences, which is useful in classifying modulation signals with different symbol rates. The achieved accuracy of 75% on an input sample length of 64 for which it was not trained, substantiates the representation power of the model. To reduce the data communication overhead from distributed sensors, the feasibility of classification using averaged magnitude spectrum data, or online classification on the low cost sensors is studied. Furthermore, quantized realizations of the proposed models are analyzed for deployment on sensors with low processing power

    Adversarial Examples in RF Deep Learning: Detection of the Attack and its Physical Robustness

    Full text link
    While research on adversarial examples in machine learning for images has been prolific, similar attacks on deep learning (DL) for radio frequency (RF) signals and their mitigation strategies are scarcely addressed in the published work, with only one recent publication in the RF domain [1]. RF adversarial examples (AdExs) can cause drastic, targeted misclassification results mostly in spectrum sensing/ survey applications (e.g. BPSK mistaken for 8-PSK) with minimal waveform perturbation. It is not clear if the RF AdExs maintain their effects in the physical world, i.e., when AdExs are delivered over-the-air (OTA). Our research on deep learning AdExs and proposed defense mechanisms are RF-centric, and incorporate physical world, OTA effects. We here present defense mechanisms based on statistical tests. One test to detect AdExs utilizes Peak-to- Average-Power-Ratio (PAPR) of the DL data points delivered OTA, while another statistical test uses the Softmax outputs of the DL classifier, which corresponds to the probabilities the classifier assigns to each of the trained classes. The former test leverages the RF nature of the data, and the latter is universally applicable to AdExs regardless of their origin. Both solutions are shown as viable mitigation methods to subvert adversarial attacks against communications and radar sensing systems

    Key Technologies and System Trade-Offs for Detection and Localization of Amateur Drones

    Full text link
    The use of amateur drones (ADrs) is expected to significantly increase over the upcoming years. However, regulations do not allow such drones to fly over all areas, in addition to typical altitude limitations. As a result, there is an urgent need for ADrs surveillance solutions. These solutions should include means of accurate detection, classification, and localization of the unwanted drones in a no-fly zone. In this paper, we give an overview of promising techniques for modulation classification and signal strength based localization of ADrs by using surveillance drones (SDrs). By introducing a generic altitude dependent propagation model, we show how detection and localization performance depend on the altitude of SDrs. Particularly, our simulation results show a 25 dB reduction in the minimum detectable power or 10 times coverage enhancement of an SDr by flying at the optimum altitude. Moreover, for a target no-fly zone, the location estimation error of an ADr can be remarkably reduced by optimizing the positions of the SDrs. Finally, we conclude the paper with a general discussion about the future work and possible challenges of the aerial surveillance systems.Comment: Accepted in IEEE communications magazine. To be published in January 201
    • …
    corecore