33,038 research outputs found

    Video-SwinUNet: Spatio-temporal Deep Learning Framework for VFSS Instance Segmentation

    Full text link
    This paper presents a deep learning framework for medical video segmentation. Convolution neural network (CNN) and transformer-based methods have achieved great milestones in medical image segmentation tasks due to their incredible semantic feature encoding and global information comprehension abilities. However, most existing approaches ignore a salient aspect of medical video data - the temporal dimension. Our proposed framework explicitly extracts features from neighbouring frames across the temporal dimension and incorporates them with a temporal feature blender, which then tokenises the high-level spatio-temporal feature to form a strong global feature encoded via a Swin Transformer. The final segmentation results are produced via a UNet-like encoder-decoder architecture. Our model outperforms other approaches by a significant margin and improves the segmentation benchmarks on the VFSS2022 dataset, achieving a dice coefficient of 0.8986 and 0.8186 for the two datasets tested. Our studies also show the efficacy of the temporal feature blending scheme and cross-dataset transferability of learned capabilities. Code and models are fully available at https://github.com/SimonZeng7108/Video-SwinUNet

    An investigation into image and video foreground segmentation and change detection

    Get PDF
    Detecting and segmenting Spatio-temporal foreground objects from videos are significant to motion pattern modelling and video content analysis. Extensive efforts have been made in the past decades. Nevertheless, video-based saliency detection and foreground segmentation remained challenging. On the one hand, the performances of image-based saliency detection algorithms are limited in complex contents, while the temporal connectivity between frames are not well-resolved. On the other hand, compared with the prosperous image-based datasets, the datasets in video-level saliency detection and segmentation usually have smaller scale and less diversity of contents. Towards a better understanding of video-level semantics, this thesis investigates the foreground estimation and segmentation in both image-level and video-level. This thesis firstly demonstrates the effectiveness of traditional features in video foreground estimation and segmentation. Motion patterns obtained by optical flow are utilised to draw coarse estimations about the foreground objects. The coarse estimations are refined by aligning motion boundaries with actual contours of the foreground objects with the participation of HOG descriptor. And a precise segmentation of the foreground is computed based on the refined foreground estimations and video-level colour distribution. Second, a deep convolutional neural network (CNN) for image saliency detection is proposed, which is named HReSNet. To improve the accuracy of saliency prediction, an independent feature refining network is implemented. A Euclidean distance loss is integrated into loss computation to enhance the saliency predictions near the contours of objects. The experimental results demonstrate that our network obtains competitive results compared with the state-of-art algorithms. Third, a large-scale dataset for video saliency detection and foreground segmentation is built to enrich the diversity of current video-based foreground segmentation datasets. A supervised framework is also proposed as the baseline, which integrates our HReSNet, Long-Short Term Memory (LSTM) networks and a hierarchical segmentation network. Forth, in the practice of change detection, there requires distinguishing the expected changes with semantics from the unexpected changes. Therefore, a new CNN design is proposed to detect changes in multi-temporal high-resolution urban images. Experimental results showed our change detection network outperformed the competing algorithms with significant advantages

    Learning Video Object Segmentation with Visual Memory

    Get PDF
    This paper addresses the task of segmenting moving objects in unconstrained videos. We introduce a novel two-stream neural network with an explicit memory module to achieve this. The two streams of the network encode spatial and temporal features in a video sequence respectively, while the memory module captures the evolution of objects over time. The module to build a "visual memory" in video, i.e., a joint representation of all the video frames, is realized with a convolutional recurrent unit learned from a small number of training video sequences. Given a video frame as input, our approach assigns each pixel an object or background label based on the learned spatio-temporal features as well as the "visual memory" specific to the video, acquired automatically without any manually-annotated frames. The visual memory is implemented with convolutional gated recurrent units, which allows to propagate spatial information over time. We evaluate our method extensively on two benchmarks, DAVIS and Freiburg-Berkeley motion segmentation datasets, and show state-of-the-art results. For example, our approach outperforms the top method on the DAVIS dataset by nearly 6%. We also provide an extensive ablative analysis to investigate the influence of each component in the proposed framework
    • …
    corecore