599,959 research outputs found

    Ensemble Kalman filter for neural network based one-shot inversion

    Full text link
    We study the use of novel techniques arising in machine learning for inverse problems. Our approach replaces the complex forward model by a neural network, which is trained simultaneously in a one-shot sense when estimating the unknown parameters from data, i.e. the neural network is trained only for the unknown parameter. By establishing a link to the Bayesian approach to inverse problems, an algorithmic framework is developed which ensures the feasibility of the parameter estimate w.r. to the forward model. We propose an efficient, derivative-free optimization method based on variants of the ensemble Kalman inversion. Numerical experiments show that the ensemble Kalman filter for neural network based one-shot inversion is a promising direction combining optimization and machine learning techniques for inverse problems

    ServeNet: A Deep Neural Network for Web Services Classification

    Full text link
    Automated service classification plays a crucial role in service discovery, selection, and composition. Machine learning has been widely used for service classification in recent years. However, the performance of conventional machine learning methods highly depends on the quality of manual feature engineering. In this paper, we present a novel deep neural network to automatically abstract low-level representation of both service name and service description to high-level merged features without feature engineering and the length limitation, and then predict service classification on 50 service categories. To demonstrate the effectiveness of our approach, we conduct a comprehensive experimental study by comparing 10 machine learning methods on 10,000 real-world web services. The result shows that the proposed deep neural network can achieve higher accuracy in classification and more robust than other machine learning methods.Comment: Accepted by ICWS'2

    A Supervised STDP-based Training Algorithm for Living Neural Networks

    Full text link
    Neural networks have shown great potential in many applications like speech recognition, drug discovery, image classification, and object detection. Neural network models are inspired by biological neural networks, but they are optimized to perform machine learning tasks on digital computers. The proposed work explores the possibilities of using living neural networks in vitro as basic computational elements for machine learning applications. A new supervised STDP-based learning algorithm is proposed in this work, which considers neuron engineering constrains. A 74.7% accuracy is achieved on the MNIST benchmark for handwritten digit recognition.Comment: 5 pages, 3 figures, Accepted by ICASSP 201

    Predicting the dissolution kinetics of silicate glasses using machine learning

    Full text link
    Predicting the dissolution rates of silicate glasses in aqueous conditions is a complex task as the underlying mechanism(s) remain poorly understood and the dissolution kinetics can depend on a large number of intrinsic and extrinsic factors. Here, we assess the potential of data-driven models based on machine learning to predict the dissolution rates of various aluminosilicate glasses exposed to a wide range of solution pH values, from acidic to caustic conditions. Four classes of machine learning methods are investigated, namely, linear regression, support vector machine regression, random forest, and artificial neural network. We observe that, although linear methods all fail to describe the dissolution kinetics, the artificial neural network approach offers excellent predictions, thanks to its inherent ability to handle non-linear data. Overall, we suggest that a more extensive use of machine learning approaches could significantly accelerate the design of novel glasses with tailored properties

    Machine Learning Molecular Dynamics for the Simulation of Infrared Spectra

    Full text link
    Machine learning has emerged as an invaluable tool in many research areas. In the present work, we harness this power to predict highly accurate molecular infrared spectra with unprecedented computational efficiency. To account for vibrational anharmonic and dynamical effects -- typically neglected by conventional quantum chemistry approaches -- we base our machine learning strategy on ab initio molecular dynamics simulations. While these simulations are usually extremely time consuming even for small molecules, we overcome these limitations by leveraging the power of a variety of machine learning techniques, not only accelerating simulations by several orders of magnitude, but also greatly extending the size of systems that can be treated. To this end, we develop a molecular dipole moment model based on environment dependent neural network charges and combine it with the neural network potentials of Behler and Parrinello. Contrary to the prevalent big data philosophy, we are able to obtain very accurate machine learning models for the prediction of infrared spectra based on only a few hundreds of electronic structure reference points. This is made possible through the introduction of a fully automated sampling scheme and the use of molecular forces during neural network potential training. We demonstrate the power of our machine learning approach by applying it to model the infrared spectra of a methanol molecule, n-alkanes containing up to 200 atoms and the protonated alanine tripeptide, which at the same time represents the first application of machine learning techniques to simulate the dynamics of a peptide. In all these case studies we find excellent agreement between the infrared spectra predicted via machine learning models and the respective theoretical and experimental spectra.Comment: 12 pages, 9 figure
    corecore