6,558 research outputs found

    Neural Simultaneous Speech Translation Using Alignment-Based Chunking

    Full text link
    In simultaneous machine translation, the objective is to determine when to produce a partial translation given a continuous stream of source words, with a trade-off between latency and quality. We propose a neural machine translation (NMT) model that makes dynamic decisions when to continue feeding on input or generate output words. The model is composed of two main components: one to dynamically decide on ending a source chunk, and another that translates the consumed chunk. We train the components jointly and in a manner consistent with the inference conditions. To generate chunked training data, we propose a method that utilizes word alignment while also preserving enough context. We compare models with bidirectional and unidirectional encoders of different depths, both on real speech and text input. Our results on the IWSLT 2020 English-to-German task outperform a wait-k baseline by 2.6 to 3.7% BLEU absolute.Comment: IWSLT 202

    Vision as an Interlingua: Learning Multilingual Semantic Embeddings of Untranscribed Speech

    Full text link
    In this paper, we explore the learning of neural network embeddings for natural images and speech waveforms describing the content of those images. These embeddings are learned directly from the waveforms without the use of linguistic transcriptions or conventional speech recognition technology. While prior work has investigated this setting in the monolingual case using English speech data, this work represents the first effort to apply these techniques to languages beyond English. Using spoken captions collected in English and Hindi, we show that the same model architecture can be successfully applied to both languages. Further, we demonstrate that training a multilingual model simultaneously on both languages offers improved performance over the monolingual models. Finally, we show that these models are capable of performing semantic cross-lingual speech-to-speech retrieval.Comment: to appear at ICASSP 201

    Audio-Linguistic Embeddings for Spoken Sentences

    Full text link
    We propose spoken sentence embeddings which capture both acoustic and linguistic content. While existing works operate at the character, phoneme, or word level, our method learns long-term dependencies by modeling speech at the sentence level. Formulated as an audio-linguistic multitask learning problem, our encoder-decoder model simultaneously reconstructs acoustic and natural language features from audio. Our results show that spoken sentence embeddings outperform phoneme and word-level baselines on speech recognition and emotion recognition tasks. Ablation studies show that our embeddings can better model high-level acoustic concepts while retaining linguistic content. Overall, our work illustrates the viability of generic, multi-modal sentence embeddings for spoken language understanding.Comment: International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 201

    Transformers with convolutional context for ASR

    Full text link
    The recent success of transformer networks for neural machine translation and other NLP tasks has led to a surge in research work trying to apply it for speech recognition. Recent efforts studied key research questions around ways of combining positional embedding with speech features, and stability of optimization for large scale learning of transformer networks. In this paper, we propose replacing the sinusoidal positional embedding for transformers with convolutionally learned input representations. These contextual representations provide subsequent transformer blocks with relative positional information needed for discovering long-range relationships between local concepts. The proposed system has favorable optimization characteristics where our reported results are produced with fixed learning rate of 1.0 and no warmup steps. The proposed model achieves a competitive 4.7% and 12.9% WER on the Librispeech ``test clean'' and ``test other'' subsets when no extra LM text is provided

    Phonetic-and-Semantic Embedding of Spoken Words with Applications in Spoken Content Retrieval

    Full text link
    Word embedding or Word2Vec has been successful in offering semantics for text words learned from the context of words. Audio Word2Vec was shown to offer phonetic structures for spoken words (signal segments for words) learned from signals within spoken words. This paper proposes a two-stage framework to perform phonetic-and-semantic embedding on spoken words considering the context of the spoken words. Stage 1 performs phonetic embedding with speaker characteristics disentangled. Stage 2 then performs semantic embedding in addition. We further propose to evaluate the phonetic-and-semantic nature of the audio embeddings obtained in Stage 2 by parallelizing with text embeddings. In general, phonetic structure and semantics inevitably disturb each other. For example the words "brother" and "sister" are close in semantics but very different in phonetic structure, while the words "brother" and "bother" are in the other way around. But phonetic-and-semantic embedding is attractive, as shown in the initial experiments on spoken document retrieval. Not only spoken documents including the spoken query can be retrieved based on the phonetic structures, but spoken documents semantically related to the query but not including the query can also be retrieved based on the semantics.Comment: Accepted at SLT201

    Multimodal Sentiment Analysis with Word-Level Fusion and Reinforcement Learning

    Full text link
    With the increasing popularity of video sharing websites such as YouTube and Facebook, multimodal sentiment analysis has received increasing attention from the scientific community. Contrary to previous works in multimodal sentiment analysis which focus on holistic information in speech segments such as bag of words representations and average facial expression intensity, we develop a novel deep architecture for multimodal sentiment analysis that performs modality fusion at the word level. In this paper, we propose the Gated Multimodal Embedding LSTM with Temporal Attention (GME-LSTM(A)) model that is composed of 2 modules. The Gated Multimodal Embedding alleviates the difficulties of fusion when there are noisy modalities. The LSTM with Temporal Attention performs word level fusion at a finer fusion resolution between input modalities and attends to the most important time steps. As a result, the GME-LSTM(A) is able to better model the multimodal structure of speech through time and perform better sentiment comprehension. We demonstrate the effectiveness of this approach on the publicly-available Multimodal Corpus of Sentiment Intensity and Subjectivity Analysis (CMU-MOSI) dataset by achieving state-of-the-art sentiment classification and regression results. Qualitative analysis on our model emphasizes the importance of the Temporal Attention Layer in sentiment prediction because the additional acoustic and visual modalities are noisy. We also demonstrate the effectiveness of the Gated Multimodal Embedding in selectively filtering these noisy modalities out. Our results and analysis open new areas in the study of sentiment analysis in human communication and provide new models for multimodal fusion.Comment: ICMI 2017 Oral Presentation, Honorable Mention Awar

    Learning from Past Mistakes: Improving Automatic Speech Recognition Output via Noisy-Clean Phrase Context Modeling

    Full text link
    Automatic speech recognition (ASR) systems often make unrecoverable errors due to subsystem pruning (acoustic, language and pronunciation models); for example pruning words due to acoustics using short-term context, prior to rescoring with long-term context based on linguistics. In this work we model ASR as a phrase-based noisy transformation channel and propose an error correction system that can learn from the aggregate errors of all the independent modules constituting the ASR and attempt to invert those. The proposed system can exploit long-term context using a neural network language model and can better choose between existing ASR output possibilities as well as re-introduce previously pruned or unseen (out-of-vocabulary) phrases. It provides corrections under poorly performing ASR conditions without degrading any accurate transcriptions; such corrections are greater on top of out-of-domain and mismatched data ASR. Our system consistently provides improvements over the baseline ASR, even when baseline is further optimized through recurrent neural network language model rescoring. This demonstrates that any ASR improvements can be exploited independently and that our proposed system can potentially still provide benefits on highly optimized ASR. Finally, we present an extensive analysis of the type of errors corrected by our system

    Completely Unsupervised Speech Recognition By A Generative Adversarial Network Harmonized With Iteratively Refined Hidden Markov Models

    Full text link
    Producing a large annotated speech corpus for training ASR systems remains difficult for more than 95% of languages all over the world which are low-resourced, but collecting a relatively big unlabeled data set for such languages is more achievable. This is why some initial effort have been reported on completely unsupervised speech recognition learned from unlabeled data only, although with relatively high error rates. In this paper, we develop a Generative Adversarial Network (GAN) to achieve this purpose, in which a Generator and a Discriminator learn from each other iteratively to improve the performance. We further use a set of Hidden Markov Models (HMMs) iteratively refined from the machine generated labels to work in harmony with the GAN. The initial experiments on TIMIT data set achieve an phone error rate of 33.1%, which is 8.5% lower than the previous state-of-the-art.Comment: Accepted by Interspeech 201

    Investigation of learning abilities on linguistic features in sequence-to-sequence text-to-speech synthesis

    Full text link
    Neural sequence-to-sequence text-to-speech synthesis (TTS) can produce high-quality speech directly from text or simple linguistic features such as phonemes. Unlike traditional pipeline TTS, the neural sequence-to-sequence TTS does not require manually annotated and complicated linguistic features such as part-of-speech tags and syntactic structures for system training. However, it must be carefully designed and well optimized so that it can implicitly extract useful linguistic features from the input features. In this paper we investigate under what conditions the neural sequence-to-sequence TTS can work well in Japanese and English along with comparisons with deep neural network (DNN) based pipeline TTS systems. Unlike past comparative studies, the pipeline systems also use autoregressive probabilistic modeling and a neural vocoder. We investigated systems from three aspects: a) model architecture, b) model parameter size, and c) language. For the model architecture aspect, we adopt modified Tacotron systems that we previously proposed and their variants using an encoder from Tacotron or Tacotron2. For the model parameter size aspect, we investigate two model parameter sizes. For the language aspect, we conduct listening tests in both Japanese and English to see if our findings can be generalized across languages. Our experiments suggest that a) a neural sequence-to-sequence TTS system should have a sufficient number of model parameters to produce high quality speech, b) it should also use a powerful encoder when it takes characters as inputs, and c) the encoder still has a room for improvement and needs to have an improved architecture to learn supra-segmental features more appropriately

    Towards Unsupervised Automatic Speech Recognition Trained by Unaligned Speech and Text only

    Full text link
    Automatic speech recognition (ASR) has been widely researched with supervised approaches, while many low-resourced languages lack audio-text aligned data, and supervised methods cannot be applied on them. In this work, we propose a framework to achieve unsupervised ASR on a read English speech dataset, where audio and text are unaligned. In the first stage, each word-level audio segment in the utterances is represented by a vector representation extracted by a sequence-of-sequence autoencoder, in which phonetic information and speaker information are disentangled. Secondly, semantic embeddings of audio segments are trained from the vector representations using a skip-gram model. Last but not the least, an unsupervised method is utilized to transform semantic embeddings of audio segments to text embedding space, and finally the transformed embeddings are mapped to words. With the above framework, we are towards unsupervised ASR trained by unaligned text and speech only.Comment: Code is released: https://github.com/grtzsohalf/Towards-Unsupervised-AS
    corecore