163 research outputs found

    Karma: Adaptive Video Streaming via Causal Sequence Modeling

    Full text link
    Optimal adaptive bitrate (ABR) decision depends on a comprehensive characterization of state transitions that involve interrelated modalities over time including environmental observations, returns, and actions. However, state-of-the-art learning-based ABR algorithms solely rely on past observations to decide the next action. This paradigm tends to cause a chain of deviations from optimal action when encountering unfamiliar observations, which consequently undermines the model generalization. This paper presents Karma, an ABR algorithm that utilizes causal sequence modeling to improve generalization by comprehending the interrelated causality among past observations, returns, and actions and timely refining action when deviation occurs. Unlike direct observation-to-action mapping, Karma recurrently maintains a multi-dimensional time series of observations, returns, and actions as input and employs causal sequence modeling via a decision transformer to determine the next action. In the input sequence, Karma uses the maximum cumulative future quality of experience (QoE) (a.k.a, QoE-to-go) as an extended return signal, which is periodically estimated based on current network conditions and playback status. We evaluate Karma through trace-driven simulations and real-world field tests, demonstrating superior performance compared to existing state-of-the-art ABR algorithms, with an average QoE improvement ranging from 10.8% to 18.7% across diverse network conditions. Furthermore, Karma exhibits strong generalization capabilities, showing leading performance under unseen networks in both simulations and real-world tests

    Comyco: Quality-Aware Adaptive Video Streaming via Imitation Learning

    Full text link
    Learning-based Adaptive Bit Rate~(ABR) method, aiming to learn outstanding strategies without any presumptions, has become one of the research hotspots for adaptive streaming. However, it typically suffers from several issues, i.e., low sample efficiency and lack of awareness of the video quality information. In this paper, we propose Comyco, a video quality-aware ABR approach that enormously improves the learning-based methods by tackling the above issues. Comyco trains the policy via imitating expert trajectories given by the instant solver, which can not only avoid redundant exploration but also make better use of the collected samples. Meanwhile, Comyco attempts to pick the chunk with higher perceptual video qualities rather than video bitrates. To achieve this, we construct Comyco's neural network architecture, video datasets and QoE metrics with video quality features. Using trace-driven and real-world experiments, we demonstrate significant improvements of Comyco's sample efficiency in comparison to prior work, with 1700x improvements in terms of the number of samples required and 16x improvements on training time required. Moreover, results illustrate that Comyco outperforms previously proposed methods, with the improvements on average QoE of 7.5% - 16.79%. Especially, Comyco also surpasses state-of-the-art approach Pensieve by 7.37% on average video quality under the same rebuffering time.Comment: ACM Multimedia 201

    Improving The Efficiency Of Video Transmission In Computer Networks

    Get PDF
    In-depth examination of current techniques for enhancing the efficiency of video transmission over digital networks is provided in this study. Due to the growing need for high-quality video content, optimizing video transmission is an important area of research. This review categorizes and in-depth examines a range of methods proposed in the literature to enhance video transmission effectiveness. ABR, DNN architecture, adaptive streaming, Quality of Service (QoS), error resilience, congestion control, video compression, and hardware acceleration for video provisioning are just a few of the cutting-edge techniques that are covered in the discussion, which ranges from the more traditional to the cutting-edge. This essay provides a methodical evaluation of the numerous tactics that are available, along with an analysis of their guiding principles, advantages, and disadvantages. The paper also offers a comparative analysis of various approaches, highlighting trends, gaps, and potential future research directions in this crucial domain, all of which help to create more efficient video compression and transmission paradigms in computer networks

    Deep Reinforcement Learning with Importance Weighted A3C for QoE enhancement in Video Delivery Services

    Full text link
    Adaptive bitrate (ABR) algorithms are used to adapt the video bitrate based on the network conditions to improve the overall video quality of experience (QoE). Recently, reinforcement learning (RL) and asynchronous advantage actor-critic (A3C) methods have been used to generate adaptive bit rate algorithms and they have been shown to improve the overall QoE as compared to fixed rule ABR algorithms. However, a common issue in the A3C methods is the lag between behaviour policy and target policy. As a result, the behaviour and the target policies are no longer synchronized which results in suboptimal updates. In this work, we present ALISA: An Actor-Learner Architecture with Importance Sampling for efficient learning in ABR algorithms. ALISA incorporates importance sampling weights to give more weightage to relevant experience to address the lag issues with the existing A3C methods. We present the design and implementation of ALISA, and compare its performance to state-of-the-art video rate adaptation algorithms including vanilla A3C implemented in the Pensieve framework and other fixed-rule schedulers like BB, BOLA, and RB. Our results show that ALISA improves average QoE by up to 25%-48% higher average QoE than Pensieve, and even more when compared to fixed-rule schedulers.Comment: Number of pages: 10, Number of figures: 9, Conference name: 24th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM
    • …
    corecore