525,587 research outputs found

    Translated Chemical Reaction Networks

    Full text link
    Many biochemical and industrial applications involve complicated networks of simultaneously occurring chemical reactions. Under the assumption of mass action kinetics, the dynamics of these chemical reaction networks are governed by systems of polynomial ordinary differential equations. The steady states of these mass action systems have been analysed via a variety of techniques, including elementary flux mode analysis, algebraic techniques (e.g. Groebner bases), and deficiency theory. In this paper, we present a novel method for characterizing the steady states of mass action systems. Our method explicitly links a network's capacity to permit a particular class of steady states, called toric steady states, to topological properties of a related network called a translated chemical reaction network. These networks share their reaction stoichiometries with their source network but are permitted to have different complex stoichiometries and different network topologies. We apply the results to examples drawn from the biochemical literature

    Graph-theoretic approaches to injectivity and multiple equilibria in systems of interacting elements

    Get PDF
    We extend previous work on injectivity in chemical reaction networks to general interaction networks. Matrix- and graph-theoretic conditions for injectivity of these systems are presented. A particular signed, directed, labelled, bipartite multigraph, termed the ``DSR graph'', is shown to be a useful representation of an interaction network when discussing questions of injectivity. A graph-theoretic condition, developed previously in the context of chemical reaction networks, is shown to be sufficient to guarantee injectivity for a large class of systems. The graph-theoretic condition is simple to state and often easy to check. Examples are presented to illustrate the wide applicability of the theory developed.Comment: 34 pages, minor corrections and clarifications on previous versio

    Model validation of simple-graph representations of metabolism

    Full text link
    The large-scale properties of chemical reaction systems, such as the metabolism, can be studied with graph-based methods. To do this, one needs to reduce the information -- lists of chemical reactions -- available in databases. Even for the simplest type of graph representation, this reduction can be done in several ways. We investigate different simple network representations by testing how well they encode information about one biologically important network structure -- network modularity (the propensity for edges to be cluster into dense groups that are sparsely connected between each other). To reach this goal, we design a model of reaction-systems where network modularity can be controlled and measure how well the reduction to simple graphs capture the modular structure of the model reaction system. We find that the network types that best capture the modular structure of the reaction system are substrate-product networks (where substrates are linked to products of a reaction) and substance networks (with edges between all substances participating in a reaction). Furthermore, we argue that the proposed model for reaction systems with tunable clustering is a general framework for studies of how reaction-systems are affected by modularity. To this end, we investigate statistical properties of the model and find, among other things, that it recreate correlations between degree and mass of the molecules.Comment: to appear in J. Roy. Soc. Intefac

    Evaluation of the Multiplane Method for Efficient Simulations of Reaction Networks

    Full text link
    Reaction networks in the bulk and on surfaces are widespread in physical, chemical and biological systems. In macroscopic systems, which include large populations of reactive species, stochastic fluctuations are negligible and the reaction rates can be evaluated using rate equations. However, many physical systems are partitioned into microscopic domains, where the number of molecules in each domain is small and fluctuations are strong. Under these conditions, the simulation of reaction networks requires stochastic methods such as direct integration of the master equation. However, direct integration of the master equation is infeasible for complex networks, because the number of equations proliferates as the number of reactive species increases. Recently, the multiplane method, which provides a dramatic reduction in the number of equations, was introduced [A. Lipshtat and O. Biham, Phys. Rev. Lett. 93, 170601 (2004)]. The reduction is achieved by breaking the network into a set of maximal fully connected sub-networks (maximal cliques). Lower-dimensional master equations are constructed for the marginal probability distributions associated with the cliques, with suitable couplings between them. In this paper we test the multiplane method and examine its applicability. We show that the method is accurate in the limit of small domains, where fluctuations are strong. It thus provides an efficient framework for the stochastic simulation of complex reaction networks with strong fluctuations, for which rate equations fail and direct integration of the master equation is infeasible. The method also applies in the case of large domains, where it converges to the rate equation results
    • …
    corecore