29,271 research outputs found
Cooperative Adaptive Control for Cloud-Based Robotics
This paper studies collaboration through the cloud in the context of
cooperative adaptive control for robot manipulators. We first consider the case
of multiple robots manipulating a common object through synchronous centralized
update laws to identify unknown inertial parameters. Through this development,
we introduce a notion of Collective Sufficient Richness, wherein parameter
convergence can be enabled through teamwork in the group. The introduction of
this property and the analysis of stable adaptive controllers that benefit from
it constitute the main new contributions of this work. Building on this
original example, we then consider decentralized update laws, time-varying
network topologies, and the influence of communication delays on this process.
Perhaps surprisingly, these nonidealized networked conditions inherit the same
benefits of convergence being determined through collective effects for the
group. Simple simulations of a planar manipulator identifying an unknown load
are provided to illustrate the central idea and benefits of Collective
Sufficient Richness.Comment: ICRA 201
Robotic Wireless Sensor Networks
In this chapter, we present a literature survey of an emerging, cutting-edge,
and multi-disciplinary field of research at the intersection of Robotics and
Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor
Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system
that aims to achieve certain sensing goals while meeting and maintaining
certain communication performance requirements, through cooperative control,
learning and adaptation. While both of the component areas, i.e., Robotics and
WSN, are very well-known and well-explored, there exist a whole set of new
opportunities and research directions at the intersection of these two fields
which are relatively or even completely unexplored. One such example would be
the use of a set of robotic routers to set up a temporary communication path
between a sender and a receiver that uses the controlled mobility to the
advantage of packet routing. We find that there exist only a limited number of
articles to be directly categorized as RWSN related works whereas there exist a
range of articles in the robotics and the WSN literature that are also relevant
to this new field of research. To connect the dots, we first identify the core
problems and research trends related to RWSN such as connectivity,
localization, routing, and robust flow of information. Next, we classify the
existing research on RWSN as well as the relevant state-of-the-arts from
robotics and WSN community according to the problems and trends identified in
the first step. Lastly, we analyze what is missing in the existing literature,
and identify topics that require more research attention in the future
Route Swarm: Wireless Network Optimization through Mobility
In this paper, we demonstrate a novel hybrid architecture for coordinating
networked robots in sensing and information routing applications. The proposed
INformation and Sensing driven PhysIcally REconfigurable robotic network
(INSPIRE), consists of a Physical Control Plane (PCP) which commands agent
position, and an Information Control Plane (ICP) which regulates information
flow towards communication/sensing objectives. We describe an instantiation
where a mobile robotic network is dynamically reconfigured to ensure high
quality routes between static wireless nodes, which act as source/destination
pairs for information flow. The ICP commands the robots towards evenly
distributed inter-flow allocations, with intra-flow configurations that
maximize route quality. The PCP then guides the robots via potential-based
control to reconfigure according to ICP commands. This formulation, deemed
Route Swarm, decouples information flow and physical control, generating a
feedback between routing and sensing needs and robotic configuration. We
demonstrate our propositions through simulation under a realistic wireless
network regime.Comment: 9 pages, 4 figures, submitted to the IEEE International Conference on
Intelligent Robots and Systems (IROS) 201
- …
