423 research outputs found

    Variant X-Tree Clock Distribution Network and Its Performance Evaluations

    Get PDF

    An Electromigration and Thermal Model of Power Wires for a Priori High-Level Reliability Prediction

    Get PDF
    In this paper, a simple power-distribution electrothermal model including the interconnect self-heating is used together with a statistical model of average and rms currents of functional blocks and a high-level model of fanout distribution and interconnect wirelength. Following the 2001 SIA roadmap projections, we are able to predict a priori that the minimum width that satisfies the electromigration constraints does not scale like the minimum metal pitch in future technology nodes. As a consequence, the percentage of chip area covered by power lines is expected to increase at the expense of wiring resources unless proper countermeasures are taken. Some possible solutions are proposed in the paper

    Accelerator Memory Reuse in the Dark Silicon Era

    Get PDF
    Accelerators integrated on-die with General-Purpose CPUs (GP-CPUs) can yield significant performance and power improvements. Their extensive use, however, is ultimately limited by their area overhead; due to their high degree of specialization, the opportunity cost of investing die real estate on accelerators can become prohibitive, especially for general-purpose architectures. In this paper we present a novel technique aimed at mitigating this opportunity cost by allowing GP-CPU cores to reuse accelerator memory as a non-uniform cache architecture (NUCA) substrate. On a system with a last level-2 cache of 128kB, our technique achieves on average a 25% performance improvement when reusing four 512 kB accelerator memory blocks to form a level-3 cache. Making these blocks reusable as NUCA slices incurs on average in a 1.89% area overhead with respect to equally-sized ad hoc cache slice

    A stochastic wire-length distribution for gigascale integration (GSI). I. Derivation and validation

    Full text link

    Error probability in synchronous digital circuits due to power supply noise

    Get PDF
    This paper presents a probabilistic approach to model the problem of power supply voltage fluctuations. Error probability calculations are shown for some 90-nm technology digital circuits. The analysis here considered gives the timing violation error probability as a new design quality factor in front of conventional techniques that assume the full perfection of the circuit. The evaluation of the error bound can be useful for new design paradigms where retry and self-recovering techniques are being applied to the design of high performance processors. The method here described allows to evaluate the performance of these techniques by means of calculating the expected error probability in terms of power supply distribution quality.Peer Reviewe

    Interconnect Challenges and Carbon Nanotube as Interconnect in Nano VLSI Circuits

    Get PDF
    This chapter discusses about the behavior of Carbon Nanotube (CNT) different structures which can be used as interconnect in Very Large Scale (VLSI) circuits in nanoscale regime. Also interconnect challenges in VLSI circuits which lead to use CNT as interconnect instead of Cu, is reviewed. CNTs are classified into three main types including Single-walled Carbon Nanotube (SWCNT), CNT Bundle, and Multi-walled Carbon Nanotube (MWCNT). Because of extremely high quantum resistance of a SWCNT which is about 6.45 kΩ, rope or bundle of CNTs are used which consist of parallel CNTs in order to overcome the high delay time due to the high intrinsic (quantum) resistance. Also MWCNTs which consist of parallel shells, present much less delay time with respect to SWCNTs, for the application as interconnects. In this chapter, first a short discussion about interconnect challenges in VLSI circuits is presented. Then the repeater insertion technique for the delay reduction in the global interconnects will be studied. After that, the parameters and circuit model of a CNT will be discussed. Then a brief review about the different structures of CNT interconnects including CNT bundle and MWCNT will be presented. At the continuation, the time domain behavior of a CNT bundle interconnect in a driver-CNT bundle-load configuration will be discussed and analyzed. In this analysis, CNT bundle is modeled as a transmission line circuit model. At the end, a brief study of stability analysis in CNT interconnects will be presented

    Error probability in synchronous digital circuits due to power supply noise

    Get PDF
    This paper presents a probabilistic approach to model the problem of power supply voltage fluctuations. Error probability calculations are shown for some 90-nm technology digital circuits. The analysis here considered gives the timing violation error probability as a new design quality factor in front of conventional techniques that assume the full perfection of the circuit. The evaluation of the error bound can be useful for new design paradigms where retry and self-recovering techniques are being applied to the design of high performance processors. The method here described allows to evaluate the performance of these techniques by means of calculating the expected error probability in terms of power supply distribution quality.Postprint (published version
    corecore