2 research outputs found

    Preliminary Results from a Peer-Led, Social Network Intervention, Augmented by Artificial Intelligence to Prevent HIV among Youth Experiencing Homelessness

    Full text link
    Each year, there are nearly 4 million youth experiencing homelessness (YEH) in the United States with HIV prevalence ranging from 3 to 11.5%. Peer change agent (PCA) models for HIV prevention have been used successfully in many populations, but there have been notable failures. In recent years, network interventionists have suggested that these failures could be attributed to PCA selection procedures. The change agents themselves who are selected to do the PCA work can often be as important as the messages they convey. To address this concern, we tested a new PCA intervention for YEH, with three arms: (1) an arm using an artificial intelligence (AI) planning algorithm to select PCA, (2) a popularity arm--the standard PCA approach--operationalized as highest degree centrality (DC), and (3) an observation only comparison group (OBS). PCA models that promote HIV testing, HIV knowledge, and condom use are efficacious for YEH. Both the AI and DC arms showed improvements over time. AI-based PCA selection led to better outcomes and increased the speed of intervention effects. Specifically, the changes in behavior observed in the AI arm occurred by 1 month, but not until 3 months in the DC arm. Given the transient nature of YEH and the high risk for HIV infection, more rapid intervention effects are desirable

    Contingency-Aware Influence Maximization: A Reinforcement Learning Approach

    Full text link
    The influence maximization (IM) problem aims at finding a subset of seed nodes in a social network that maximize the spread of influence. In this study, we focus on a sub-class of IM problems, where whether the nodes are willing to be the seeds when being invited is uncertain, called contingency-aware IM. Such contingency aware IM is critical for applications for non-profit organizations in low resource communities (e.g., spreading awareness of disease prevention). Despite the initial success, a major practical obstacle in promoting the solutions to more communities is the tremendous runtime of the greedy algorithms and the lack of high performance computing (HPC) for the non-profits in the field -- whenever there is a new social network, the non-profits usually do not have the HPCs to recalculate the solutions. Motivated by this and inspired by the line of works that use reinforcement learning (RL) to address combinatorial optimization on graphs, we formalize the problem as a Markov Decision Process (MDP), and use RL to learn an IM policy over historically seen networks, and generalize to unseen networks with negligible runtime at test phase. To fully exploit the properties of our targeted problem, we propose two technical innovations that improve the existing methods, including state-abstraction and theoretically grounded reward shaping. Empirical results show that our method achieves influence as high as the state-of-the-art methods for contingency-aware IM, while having negligible runtime at test phase.Comment: 11 pages; accepted for publication at UAI 202
    corecore