18,775 research outputs found
Control orchestration protocol:unified transport API for distributed cloud and network orchestration
In the context of the fifth generation of mobile technology (5G), multiple technologies will converge into a unified end-to-end system. For this purpose, software defined networking (SDN) is proposed, as the control paradigm will integrate all network segments and heterogeneous optical and wireless network technologies together with massive storage and computing infrastructures. The control orchestration protocol is presented as a unified transport application programming interface solution for joint cloud/network orchestration, allowing interworking of heterogeneous control planes to provide provisioning and recovery of quality of service (QoS)-aware end-to-end services. End-to-end QoS is guaranteed by provisioning and restoration schemes, which are proposed for optical circuit/packet switching restoration by means of signal monitoring and adaptive modulation and adaptive route control, respectively. The proposed solution is experimentally demonstrated in an international multi-partner test bed, which consists of a multi-domain transport network comprising optical circuit switching and optical packet switching domains controlled by SDN/OpenFlow and Generalized Multiprotocol Label Switching (GMPLS) control planes and a distributed cloud infrastructure. The results show the dynamic provisioning of IT and network resources and recovery capabilities of the architecture.Grant numbers : This work was partially supported by the Spanish MINECO project DESTELLO (TEC2015-69256-R)
LearnQoS: a learning approach for optimizing QoS over multimedia-based SDNs
As video-based services become an integral part of the end-users’ lives, there is an imminent need for increase in the backhaul capacity and resource management efficiency to enable a highly enhanced multimedia experience to the endusers. The next-generation networking paradigm offers wide advantages over the traditional networks through simplifying the management layer, especially with the adoption of Software Defined Networks (SDN). However, enabling Quality of Service (QoS) provisioning still remains a challenge that needs to be optimized especially for multimedia-based applications. In this paper, we propose LearnQoS, an intelligent QoS management framework for multimedia-based SDNs. LearnQoS employs a policy-based network management (PBNM) to ensure the compliance of QoS requirements and optimizes the operation of PBNM through Reinforcement Learning (RL). The proposed LearnQoS framework is implemented and evaluated under an experimental setup environment and compared with the default SDN operation in terms of PSNR, MOS, throughput and packet loss
Challenges for the comprehensive management of cloud services in a PaaS framework
The 4CaaSt project aims at developing a PaaS framework that enables flexible definition, marketing, deployment and management of Cloud-based services and applications. The major innovations proposed by 4CaaSt are the blueprint and its lifecycle management, a one stop shop for Cloud services and a PaaS level resource management featuring elasticity. 4CaaSt also provides a portfolio of ready to use Cloud native services and Cloud-aware immigrant technologies
Fog Computing: A Taxonomy, Survey and Future Directions
In recent years, the number of Internet of Things (IoT) devices/sensors has
increased to a great extent. To support the computational demand of real-time
latency-sensitive applications of largely geo-distributed IoT devices/sensors,
a new computing paradigm named "Fog computing" has been introduced. Generally,
Fog computing resides closer to the IoT devices/sensors and extends the
Cloud-based computing, storage and networking facilities. In this chapter, we
comprehensively analyse the challenges in Fogs acting as an intermediate layer
between IoT devices/ sensors and Cloud datacentres and review the current
developments in this field. We present a taxonomy of Fog computing according to
the identified challenges and its key features.We also map the existing works
to the taxonomy in order to identify current research gaps in the area of Fog
computing. Moreover, based on the observations, we propose future directions
for research
Mobile Communications Industry Scenarios and Strategic Implications for Network Equipment Vendors
Mobile infrastructure markets have changed dramatically during the past years. The industry is experiencing a shift from traditional large-scale, hardware-driven system roll-outs to software and services -driven business models. Also, the telecommunications and internet worlds are colliding in both mobile infrastructure and services domains requiring established network equipment vendors and mobile operators to transform and adapt to the new business environment. This paper utilizes Schoemaker's scenario planning process to reveal critical uncertain elements shaping the future of the industry. Four possible scenarios representing different value systems between industry's key stakeholders are created. After this, five strategic options with differing risk and cost factors for established network equipment vendors are discussed in order to aid firm's strategic planning process. --
QoE-Centric Control and Management of Multimedia Services in Software Defined and Virtualized Networks
Multimedia services consumption has increased tremendously since the deployment of 4G/LTE networks. Mobile video services (e.g., YouTube and Mobile TV) on smart devices are expected to continue to grow with the emergence and evolution of future networks such as 5G. The end user’s demand for services with better quality from service providers has triggered a trend towards Quality of Experience (QoE) - centric network management through efficient utilization of network resources. However, existing network technologies are either unable to adapt to diverse changing network conditions or limited in available resources.
This has posed challenges to service providers for provisioning of QoE-centric multimedia services. New networking solutions such as Software Defined Networking (SDN) and Network Function Virtualization (NFV) can provide better solutions in terms of
QoE control and management of multimedia services in emerging and future networks. The features of SDN, such as adaptability, programmability and cost-effectiveness make it suitable for bandwidth-intensive multimedia applications such as live video streaming, 3D/HD video and video gaming. However, the delivery of multimedia services over SDN/NFV networks to achieve optimized QoE, and the overall QoE-centric network resource management remain an open question especially in the advent development of future softwarized networks. 
The work in this thesis intends to investigate, design and develop novel approaches for QoE-centric control and management of multimedia services (with a focus on video streaming services) over software defined and virtualized networks.
First, a video quality management scheme based on the traffic intensity under Dynamic Adaptive Video Streaming over HTTP (DASH) using SDN is developed. The proposed scheme can mitigate virtual port queue congestion which may cause
buffering or stalling events during video streaming, thus, reducing the video quality.
A QoE-driven resource allocation mechanism is designed and developed for improving the end user’s QoE for video streaming services. The aim of this approach is to find the best combination of network node functions that can provide an optimized QoE level to end-users through network node cooperation. Furthermore, a novel QoE-centric management scheme is proposed and developed, which utilizes Multipath TCP (MPTCP) and Segment Routing (SR) to enhance QoE for video streaming services over SDN/NFV-based networks. The goal of this strategy is to enable service providers to route network traffic through multiple
disjointed bandwidth-satisfying paths and meet specific service QoE guarantees to the end-users. Extensive experiments demonstrated that the proposed schemes in this work improve the video quality significantly compared with the state-of-the-
art approaches. The thesis further proposes the path protections and link failure-free MPTCP/SR-based architecture that increases survivability, resilience, availability and robustness of future networks. The proposed path protection and dynamic link recovery scheme achieves a minimum time to recover from a failed link and avoids link congestion in softwarized networks
End-to-end 5G service deployment and orchestration in optical networks with QoE guarantees
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThe upcoming 5G deployments will impose stringent requirements. Optical networks control and resource orchestration is set to potentially turn into software-defined approaches in order to address such requirements. As a result, there rises a need for an architectural scheme capable of supporting the different types of services defined for 5G verticals.We present in this paper an architecture enabling end-to-end (E2E) provisioning and monitoring of such 5G services over optical network segments. In particular, the scenario considers the coordination of various optical enabled network segments by a higher level E2E Orchestrator, which provides of network slice deployment and is able to guarantee agreed levels of Quality of Experience (QoE). Moreover, we discuss an example of 5G service provisioning using the proposed architecture to demonstrate its behaviour in front of different network events.Peer ReviewedPostprint (author's final draft
- …
