47,473 research outputs found

    Signal-Aligned Network Coding in K-User MIMO Interference Channels with Limited Receiver Cooperation

    Full text link
    In this paper, we propose a signal-aligned network coding (SNC) scheme for K-user time-varying multiple-input multiple-output (MIMO) interference channels with limited receiver cooperation. We assume that the receivers are connected to a central processor via wired cooperation links with individual limited capacities. Our SNC scheme determines the precoding matrices of the transmitters so that the transmitted signals are aligned at each receiver. The aligned signals are then decoded into noiseless integer combinations of messages, also known as network-coded messages, by physical-layer network coding. The key idea of our scheme is to ensure that independent integer combinations of messages can be decoded at the receivers. Hence the central processor can recover the original messages of the transmitters by solving the linearly independent equations. We prove that our SNC scheme achieves full degrees of freedom (DoF) by utilizing signal alignment and physical-layer network coding. Simulation results show that our SNC scheme outperforms the compute-and-forward scheme in the finite SNR regime of the two-user and the three-user cases. The performance improvement of our SNC scheme mainly comes from efficient utilization of the signal subspaces for conveying independent linear equations of messages to the central processor.Comment: 12 pages, 4 figures, submitted to the IEEE Transactions on Vehicular Technolog

    Generalized Adaptive Network Coding Aided Successive Relaying Based Noncoherent Cooperation

    No full text
    A generalized adaptive network coding (GANC) scheme is conceived for a multi-user, multi-relay scenario, where the multiple users transmit independent information streams to a common destination with the aid of multiple relays. The proposed GANC scheme is developed from adaptive network coded cooperation (ANCC), which aims for a high flexibility in order to: 1) allow arbitrary channel coding schemes to serve as the cross-layer network coding regime; 2) provide any arbitrary trade-off between the throughput and reliability by adjusting the ratio of the source nodes and the cooperating relay nodes. Furthermore, we incorporate the proposed GANC scheme in a novel successive relaying aided network (SRAN) in order to recover the typical 50% half-duplex relaying-induced throughput loss. However, it is unrealistic to expect that in addition to carrying out all the relaying functions, the relays could additionally estimate the source-to-relay channels. Hence noncoherent detection is employed in order to obviate the power-hungry channel estimation. Finally, we intrinsically amalgamate our GANC scheme with the joint network-channel coding (JNCC) concept into a powerful three-stage concatenated architecture relying on iterative detection, which is specifically designed for the destination node (DN). The proposed scheme is also capable of adapting to rapidly time-varying network topologies, while relying on energy-efficient detection

    Superposition Coding Aided Bi-directional Relay Transmission Employing Iteratively Decoded Self-Concatenated Convolutional Codes

    No full text
    In this paper, we consider coding schemes designed for two nodes communicating with each other with the aid of a relay node, which receives information from the two nodes in the first time slot. At the relay node we combine a powerful Superposition Coding (SPC) scheme with Iteratively Decoded Self-Concatenated Convolutional Codes (SECCC-ID), which exchange mutual information between each other. It is assumed that decoding errors may be encountered at the relay node. The relay node then broadcasts this information in the second time slot after re-encoding it, again, using a SECCC encoder. At the destination, an amalgamated SPC-SECCC block then detects and decodes the signal either with or without the aid of a priori information. Our simulation results demonstrate that the proposed scheme is capable of reliably operating at a low BER for transmission over both AWGN and uncorrelated Rayleigh fading channels. We compare the proposed scheme’s performance to a direct transmission link between the two sources having the same throughput. Additionally, the SPC-SECCC system achieves a low BER even for realistic error-infested relaying
    corecore