845,448 research outputs found
Designing Network Protocols for Good Equilibria
Designing and deploying a network protocol determines the rules by which end users interact with each other and with the network. We consider the problem of designing a protocol to optimize the equilibrium behavior of a network with selfish users. We consider network cost-sharing games, where the set of Nash equilibria depends fundamentally on the choice of an edge cost-sharing protocol. Previous research focused on the Shapley protocol, in which the cost of each edge is shared equally among its users. We systematically study the design of optimal cost-sharing protocols for undirected and directed graphs, single-sink and multicommodity networks, and different measures of the inefficiency of equilibria. Our primary technical tool is a precise characterization of the cost-sharing protocols that induce only network games with pure-strategy Nash equilibria. We use this characterization to prove, among other results, that the Shapley protocol is optimal in directed graphs and that simple priority protocols are essentially optimal in undirected graphs
Real-life performance of protocol combinations for wireless sensor networks
Wireless sensor networks today are used for many and diverse applications like nature monitoring, or process and wireless building automation. However, due to the limited access to large testbeds and the lack of benchmarking standards, the real-life evaluation of network protocols and their combinations remains mostly unaddressed in current literature. To shed further light upon this matter, this paper presents a thorough experimental performance analysis of six protocol combinations for TinyOS. During these protocol assessments, our research showed that the real-life performance often differs substantially from the expectations. Moreover, we found that combining protocols is far from trivial, as individual network protocols may perform very different in combination with other protocols. The results of our research emphasize the necessity of a flexible generic benchmarking framework, powerful enough to evaluate and compare network protocols and their combinations in different use cases
Quantum linear network coding as one-way quantum computation
Network coding is a technique to maximize communication rates within a
network, in communication protocols for simultaneous multi-party transmission
of information. Linear network codes are examples of such protocols in which
the local computations performed at the nodes in the network are limited to
linear transformations of their input data (represented as elements of a ring,
such as the integers modulo 2). The quantum linear network coding protocols of
Kobayashi et al [arXiv:0908.1457 and arXiv:1012.4583] coherently simulate
classical linear network codes, using supplemental classical communication. We
demonstrate that these protocols correspond in a natural way to
measurement-based quantum computations with graph states over over qudits
[arXiv:quant-ph/0301052, arXiv:quant-ph/0603226, and arXiv:0704.1263] having a
structure directly related to the network.Comment: 17 pages, 6 figures. Updated to correct an incorrect (albeit
hilarious) reference in the arXiv version of the abstrac
Distributed Broadcasting and Mapping Protocols in Directed Anonymous Networks
We initiate the study of distributed protocols over directed anonymous networks that are not necessarily strongly connected. In such networks, nodes are aware only of their incoming and outgoing edges, have no unique identity, and have no knowledge of the network topology or even bounds on its parameters, like the number of nodes or the network diameter. Anonymous networks are of interest in various settings such as wireless ad-hoc networks and peer to peer networks. Our goal is to create distributed protocols that reduce the uncertainty by distributing the knowledge of the network topology to all the nodes.
We consider two basic protocols: broadcasting and unique label assignment. These two protocols enable a complete mapping of the network and can serve as key building blocks in more advanced protocols. We develop distributed asynchronous protocols as well as derive lower bounds on their communication complexity, total bandwidth complexity, and node label complexity. The resulting lower bounds are sometimes surprisingly high, exhibiting the complexity of topology extraction in directed anonymous networks
Improving VANET Protocols via Network Science
Developing routing protocols for Vehicular Ad Hoc Networks (VANETs) is a
significant challenge in these large, self- organized and distributed networks.
We address this challenge by studying VANETs from a network science perspective
to develop solutions that act locally but influence the network performance
globally. More specifically, we look at snapshots from highway and urban VANETs
of different sizes and vehicle densities, and study parameters such as the node
degree distribution, the clustering coefficient and the average shortest path
length, in order to better understand the networks' structure and compare it to
structures commonly found in large real world networks such as small-world and
scale-free networks. We then show how to use this information to improve
existing VANET protocols. As an illustrative example, it is shown that, by
adding new mechanisms that make use of this information, the overhead of the
urban vehicular broadcasting (UV-CAST) protocol can be reduced substantially
with no significant performance degradation.Comment: Proceedings of the 2012 IEEE Vehicular Networking Conference (VNC),
Korea, November 201
Toward an efficient solution for dynamic ad hoc network interoperability
An ad hoc network is formed by an impromptu grouping of network capable nodes. The nodes forming the network have unconstrained mobility, and so provide a dynamic network topology. Current work in this research area has focused on designing routing protocols capable of efficiently forwarding packets in these dynamic network environments. This has led to several designs for ad hoc routing protocols based on various routing algorithms, each suited to specific usage characteristics. This paper will discuss issues relating to routing in ad hoc networks. We will describe an active networking based solution that provides dynamic routing protocol interoperability and enables migration of nodes between ad hoc groups. Our design is motivated by a squad and base scenario which consists of two groups wishing to communicate. These groups have contrasting deployment characteristics and so use different routing protocols
- …
