33,683 research outputs found
Enabling virtual radio functions on software defined radio for future wireless networks
Today's wired networks have become highly flexible, thanks to the fact that an increasing number of functionalities are realized by software rather than dedicated hardware. This trend is still in its early stages for wireless networks, but it has the potential to improve the network's flexibility and resource utilization regarding both the abundant computational resources and the scarce radio spectrum resources. In this work we provide an overview of the enabling technologies for network reconfiguration, such as Network Function Virtualization, Software Defined Networking, and Software Defined Radio. We review frequently used terminology such as softwarization, virtualization, and orchestration, and how these concepts apply to wireless networks. We introduce the concept of Virtual Radio Function, and illustrate how softwarized/virtualized radio functions can be placed and initialized at runtime, allowing radio access technologies and spectrum allocation schemes to be formed dynamically. Finally we focus on embedded Software-Defined Radio as an end device, and illustrate how to realize the placement, initialization and configuration of virtual radio functions on such kind of devices
Specifying and Placing Chains of Virtual Network Functions
Network appliances perform different functions on network flows and
constitute an important part of an operator's network. Normally, a set of
chained network functions process network flows. Following the trend of
virtualization of networks, virtualization of the network functions has also
become a topic of interest. We define a model for formalizing the chaining of
network functions using a context-free language. We process deployment requests
and construct virtual network function graphs that can be mapped to the
network. We describe the mapping as a Mixed Integer Quadratically Constrained
Program (MIQCP) for finding the placement of the network functions and chaining
them together considering the limited network resources and requirements of the
functions. We have performed a Pareto set analysis to investigate the possible
trade-offs between different optimization objectives
- …
