112,622 research outputs found

    Sensor Placement for Learning in Flow Networks

    Full text link
    Large infrastructure networks (e.g. for transportation and power distribution) require constant monitoring for failures, congestion, and other adversarial events. However, assigning a sensor to every link in the network is often infeasible due to placement and maintenance costs. Instead, sensors can be placed only on a few key links, and machine learning algorithms can be leveraged for the inference of missing measurements (e.g. traffic counts, power flows) across the network. This paper investigates the sensor placement problem for networks. We first formalize the problem under a flow conservation assumption and show that it is NP-hard to place a fixed set of sensors optimally. Next, we propose an efficient and adaptive greedy heuristic for sensor placement that scales to large networks. Our experiments, using datasets from real-world application domains, show that the proposed approach enables more accurate inference than existing alternatives from the literature. We demonstrate that considering even imperfect or incomplete ground-truth estimates can vastly improve the prediction error, especially when a small number of sensors is available.Comment: 9 pages, 6 figure

    Service Chaining Placement Based on Satellite Mission Planning in Ground Station Networks

    Get PDF
    As the increase in satellite number and variety, satellite ground stations should be required to offer user services in a flexible and efficient manner. Network function virtualization (NFV) can provide a new paradigm to allocate network resources on-demand for user services over the underlying network. However, most of the existing work focuses on the virtual network function (VNF) placement and routing traffic problem for enterprise data center networks, the issue needs to further study in satellite communication scenarios. In this paper, we investigate the VNF placement and routing traffic problem in satellite ground station networks. We formulate the problem of resource allocation as an integer linear programming (ILP) model and the objective is to minimize the link resource utilization and the number of servers used. Considering the information about satellite orbit fixation and mission planning, we propose location-aware resource allocation (LARA) algorithms based on Greedy and IBM CPLEX 12.10, respectively. The proposed LARA algorithm can assist in deploying VNFs and routing traffic flows by predicting the running conditions of user services. We evaluate the performance of our proposed LARA algorithm in three networks of Fat-Tree, BCube, and VL2. Simulation results show that our proposed LARA algorithm performs better than that without prediction, and can effectively decrease the average resource utilization of satellite ground station networks

    NeuRoute: Predictive Dynamic Routing for Software-Defined Networks

    Full text link
    This paper introduces NeuRoute, a dynamic routing framework for Software Defined Networks (SDN) entirely based on machine learning, specifically, Neural Networks. Current SDN/OpenFlow controllers use a default routing based on Dijkstra algorithm for shortest paths, and provide APIs to develop custom routing applications. NeuRoute is a controller-agnostic dynamic routing framework that (i) predicts traffic matrix in real time, (ii) uses a neural network to learn traffic characteristics and (iii) generates forwarding rules accordingly to optimize the network throughput. NeuRoute achieves the same results as the most efficient dynamic routing heuristic but in much less execution time.Comment: Accepted for CNSM 201
    corecore