770 research outputs found

    A critical review of intrusion detection systems in the internet of things : techniques, deployment strategy, validation strategy, attacks, public datasets and challenges

    Get PDF
    The Internet of Things (IoT) has been rapidly evolving towards making a greater impact on everyday life to large industrial systems. Unfortunately, this has attracted the attention of cybercriminals who made IoT a target of malicious activities, opening the door to a possible attack on the end nodes. To this end, Numerous IoT intrusion detection Systems (IDS) have been proposed in the literature to tackle attacks on the IoT ecosystem, which can be broadly classified based on detection technique, validation strategy, and deployment strategy. This survey paper presents a comprehensive review of contemporary IoT IDS and an overview of techniques, deployment Strategy, validation strategy and datasets that are commonly applied for building IDS. We also review how existing IoT IDS detect intrusive attacks and secure communications on the IoT. It also presents the classification of IoT attacks and discusses future research challenges to counter such IoT attacks to make IoT more secure. These purposes help IoT security researchers by uniting, contrasting, and compiling scattered research efforts. Consequently, we provide a unique IoT IDS taxonomy, which sheds light on IoT IDS techniques, their advantages and disadvantages, IoT attacks that exploit IoT communication systems, corresponding advanced IDS and detection capabilities to detect IoT attacks. © 2021, The Author(s)

    Internet of Things security with machine learning techniques:a systematic literature review

    Get PDF
    Abstract. The Internet of Things (IoT) technologies are beneficial for both private and businesses. The growth of the technology and its rapid introduction to target fast-growing markets faces security challenges. Machine learning techniques have been recently used in research studies as a solution in securing IoT devices. These machine learning techniques have been implemented successfully in other fields. The objective of this thesis is to identify and analyze existing scientific literature published recently regarding the use of machine learning techniques in securing IoT devices. In this thesis, a systematic literature review was conducted to explore the previous research on the use of machine learning in IoT security. The review was conducted by following a procedure developed in the review protocol. The data for the study was collected from three databases i.e. IEEE Xplore, Scopus and Web of Science. From a total of 855 identified papers, 20 relevant primary studies were selected to answer the research question. The study identified 7 machine learning techniques used in IoT security, additionally, several attack models were identified and classified into 5 categories. The results show that the use of machine learning techniques in IoT security is a promising solution to the challenges facing security. Supervised machine learning techniques have better performance in comparison to unsupervised and reinforced learning. The findings also identified that data types and the learning method affects the performance of machine learning techniques. Furthermore, the results show that machine learning approach is mostly used in securing the network

    Deep Learning for Network Traffic Monitoring and Analysis (NTMA): A Survey

    Get PDF
    Modern communication systems and networks, e.g., Internet of Things (IoT) and cellular networks, generate a massive and heterogeneous amount of traffic data. In such networks, the traditional network management techniques for monitoring and data analytics face some challenges and issues, e.g., accuracy, and effective processing of big data in a real-time fashion. Moreover, the pattern of network traffic, especially in cellular networks, shows very complex behavior because of various factors, such as device mobility and network heterogeneity. Deep learning has been efficiently employed to facilitate analytics and knowledge discovery in big data systems to recognize hidden and complex patterns. Motivated by these successes, researchers in the field of networking apply deep learning models for Network Traffic Monitoring and Analysis (NTMA) applications, e.g., traffic classification and prediction. This paper provides a comprehensive review on applications of deep learning in NTMA. We first provide fundamental background relevant to our review. Then, we give an insight into the confluence of deep learning and NTMA, and review deep learning techniques proposed for NTMA applications. Finally, we discuss key challenges, open issues, and future research directions for using deep learning in NTMA applications.publishedVersio

    IoT and Sensor Networks in Industry and Society

    Get PDF
    The exponential progress of Information and Communication Technology (ICT) is one of the main elements that fueled the acceleration of the globalization pace. Internet of Things (IoT), Artificial Intelligence (AI) and big data analytics are some of the key players of the digital transformation that is affecting every aspect of human's daily life, from environmental monitoring to healthcare systems, from production processes to social interactions. In less than 20 years, people's everyday life has been revolutionized, and concepts such as Smart Home, Smart Grid and Smart City have become familiar also to non-technical users. The integration of embedded systems, ubiquitous Internet access, and Machine-to-Machine (M2M) communications have paved the way for paradigms such as IoT and Cyber Physical Systems (CPS) to be also introduced in high-requirement environments such as those related to industrial processes, under the forms of Industrial Internet of Things (IIoT or I2oT) and Cyber-Physical Production Systems (CPPS). As a consequence, in 2011 the German High-Tech Strategy 2020 Action Plan for Germany first envisioned the concept of Industry 4.0, which is rapidly reshaping traditional industrial processes. The term refers to the promise to be the fourth industrial revolution. Indeed, the first industrial revolution was triggered by water and steam power. Electricity and assembly lines enabled mass production in the second industrial revolution. In the third industrial revolution, the introduction of control automation and Programmable Logic Controllers (PLCs) gave a boost to factory production. As opposed to the previous revolutions, Industry 4.0 takes advantage of Internet access, M2M communications, and deep learning not only to improve production efficiency but also to enable the so-called mass customization, i.e. the mass production of personalized products by means of modularized product design and flexible processes. Less than five years later, in January 2016, the Japanese 5th Science and Technology Basic Plan took a further step by introducing the concept of Super Smart Society or Society 5.0. According to this vision, in the upcoming future, scientific and technological innovation will guide our society into the next social revolution after the hunter-gatherer, agrarian, industrial, and information eras, which respectively represented the previous social revolutions. Society 5.0 is a human-centered society that fosters the simultaneous achievement of economic, environmental and social objectives, to ensure a high quality of life to all citizens. This information-enabled revolution aims to tackle today’s major challenges such as an ageing population, social inequalities, depopulation and constraints related to energy and the environment. Accordingly, the citizens will be experiencing impressive transformations into every aspect of their daily lives. This book offers an insight into the key technologies that are going to shape the future of industry and society. It is subdivided into five parts: the I Part presents a horizontal view of the main enabling technologies, whereas the II-V Parts offer a vertical perspective on four different environments. The I Part, dedicated to IoT and Sensor Network architectures, encompasses three Chapters. In Chapter 1, Peruzzi and Pozzebon analyse the literature on the subject of energy harvesting solutions for IoT monitoring systems and architectures based on Low-Power Wireless Area Networks (LPWAN). The Chapter does not limit the discussion to Long Range Wise Area Network (LoRaWAN), SigFox and Narrowband-IoT (NB-IoT) communication protocols, but it also includes other relevant solutions such as DASH7 and Long Term Evolution MAchine Type Communication (LTE-M). In Chapter 2, Hussein et al. discuss the development of an Internet of Things message protocol that supports multi-topic messaging. The Chapter further presents the implementation of a platform, which integrates the proposed communication protocol, based on Real Time Operating System. In Chapter 3, Li et al. investigate the heterogeneous task scheduling problem for data-intensive scenarios, to reduce the global task execution time, and consequently reducing data centers' energy consumption. The proposed approach aims to maximize the efficiency by comparing the cost between remote task execution and data migration. The II Part is dedicated to Industry 4.0, and includes two Chapters. In Chapter 4, Grecuccio et al. propose a solution to integrate IoT devices by leveraging a blockchain-enabled gateway based on Ethereum, so that they do not need to rely on centralized intermediaries and third-party services. As it is better explained in the paper, where the performance is evaluated in a food-chain traceability application, this solution is particularly beneficial in Industry 4.0 domains. Chapter 5, by De Fazio et al., addresses the issue of safety in workplaces by presenting a smart garment that integrates several low-power sensors to monitor environmental and biophysical parameters. This enables the detection of dangerous situations, so as to prevent or at least reduce the consequences of workers accidents. The III Part is made of two Chapters based on the topic of Smart Buildings. In Chapter 6, Petroșanu et al. review the literature about recent developments in the smart building sector, related to the use of supervised and unsupervised machine learning models of sensory data. The Chapter poses particular attention on enhanced sensing, energy efficiency, and optimal building management. In Chapter 7, Oh examines how much the education of prosumers about their energy consumption habits affects power consumption reduction and encourages energy conservation, sustainable living, and behavioral change, in residential environments. In this Chapter, energy consumption monitoring is made possible thanks to the use of smart plugs. Smart Transport is the subject of the IV Part, including three Chapters. In Chapter 8, Roveri et al. propose an approach that leverages the small world theory to control swarms of vehicles connected through Vehicle-to-Vehicle (V2V) communication protocols. Indeed, considering a queue dominated by short-range car-following dynamics, the Chapter demonstrates that safety and security are increased by the introduction of a few selected random long-range communications. In Chapter 9, Nitti et al. present a real time system to observe and analyze public transport passengers' mobility by tracking them throughout their journey on public transport vehicles. The system is based on the detection of the active Wi-Fi interfaces, through the analysis of Wi-Fi probe requests. In Chapter 10, Miler et al. discuss the development of a tool for the analysis and comparison of efficiency indicated by the integrated IT systems in the operational activities undertaken by Road Transport Enterprises (RTEs). The authors of this Chapter further provide a holistic evaluation of efficiency of telematics systems in RTE operational management. The book ends with the two Chapters of the V Part on Smart Environmental Monitoring. In Chapter 11, He et al. propose a Sea Surface Temperature Prediction (SSTP) model based on time-series similarity measure, multiple pattern learning and parameter optimization. In this strategy, the optimal parameters are determined by means of an improved Particle Swarm Optimization method. In Chapter 12, Tsipis et al. present a low-cost, WSN-based IoT system that seamlessly embeds a three-layered cloud/fog computing architecture, suitable for facilitating smart agricultural applications, especially those related to wildfire monitoring. We wish to thank all the authors that contributed to this book for their efforts. We express our gratitude to all reviewers for the volunteering support and precious feedback during the review process. We hope that this book provides valuable information and spurs meaningful discussion among researchers, engineers, businesspeople, and other experts about the role of new technologies into industry and society

    Context-Aware Human Activity Recognition (CAHAR) in-the-Wild Using Smartphone Accelerometer

    Get PDF

    A Novel Chimp Optimized Linear Kernel Regression (COLKR) Model for Call Drop Prediction in Mobile Networks

    Get PDF
    Call failure can be caused by a variety of factors, including inadequate cellular infrastructure, undesirable system structuring, busy mobile phone towers, changing between towers, and many more. Outdated equipment and networks worsen call failure, and installing more towers to improve coverage might harm the regional ecosystems. In the existing studies, a variety of machine learning algorithms are implemented for call drop prediction in the mobile networks. But it facing problems in terms of high error rate, low prediction accuracy, system complexity, and more training time. Therefore, the proposed work intends to develop a new and sophisticated framework, named as, Chimp Optimized Linear Kernel Regression (COLKR) for predicting call drops in the mobile networks. For the analysis, the Call Detail Record (CDR) has been collected and used in this framework. By preprocessing the attributes, the normalized dataset is constructed using the median regression-based filtering technique. To extract the most significant features for training the classifier with minimum processing complexity, a sophisticated Chimp Optimization Algorithm (COA) is applied. Then, a new machine learning model known as the Linear Kernel Regression Model (LKRM) has been deployed to predict call drops with greater accuracy and less error. For the performance assessment of COLKR, several machine learning classifiers are compared with the proposed model using a variety of measures. By using the proposed COLKR mechanism, the call drop detection accuracy is improved to 99.4%, and the error rate is reduced to 0.098%, which determines the efficiency and superiority of the proposed system

    Elephant Flows Detection Using Deep Neural Network, Convolutional Neural Network, Long Short Term Memory and Autoencoder

    Full text link
    Currently, the wide spreading of real-time applications such as VoIP and videos-based applications require more data rates and reduced latency to ensure better quality of service (QoS). A well-designed traffic classification mechanism plays a major role for good QoS provision and network security verification. Port-based approaches and deep packet inspections (DPI) techniques have been used to classify and analyze network traffic flows. However, none of these methods can cope with the rapid growth of network traffic due to the increasing number of Internet users and the growth of real time applications. As a result, these methods lead to network congestion, resulting in packet loss, delay and inadequate QoS delivery. Recently, a deep learning approach has been explored to address the time-consumption and impracticality gaps of the above methods and maintain existing and future traffics of real-time applications. The aim of this research is then to design a dynamic traffic classifier that can detect elephant flows to prevent network congestion. Thus, we are motivated to provide efficient bandwidth and fast transmision requirements to many Internet users using SDN capability and the potential of Deep Learning. Specifically, DNN, CNN, LSTM and Deep autoencoder are used to build elephant detection models that achieve an average accuracy of 99.12%, 98.17%, and 98.78%, respectively. Deep autoencoder is also one of the promising algorithms that does not require human class labeler. It achieves an accuracy of 97.95% with a loss of 0.13 . Since the loss value is closer to zero, the performance of the model is good. Therefore, the study has a great importance to Internet service providers, Internet subscribers, as well as for future researchers in this area.Comment: 27 page

    Secure Bluetooth Communication in Smart Healthcare Systems: A Novel Community Dataset and Intrusion Detection System †

    Get PDF
    © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Smart health presents an ever-expanding attack surface due to the continuous adoption of a broad variety of Internet of Medical Things (IoMT) devices and applications. IoMT is a common approach to smart city solutions that deliver long-term benefits to critical infrastructures, such as smart healthcare. Many of the IoMT devices in smart cities use Bluetooth technology for short-range communication due to its flexibility, low resource consumption, and flexibility. As smart healthcare applications rely on distributed control optimization, artificial intelligence (AI) and deep learning (DL) offer effective approaches to mitigate cyber-attacks. This paper presents a decentralized, predictive, DL-based process to autonomously detect and block malicious traffic and provide an end-to-end defense against network attacks in IoMT devices. Furthermore, we provide the BlueTack dataset for Bluetooth-based attacks against IoMT networks. To the best of our knowledge, this is the first intrusion detection dataset for Bluetooth classic and Bluetooth low energy (BLE). Using the BlueTack dataset, we devised a multi-layer intrusion detection method that uses deep-learning techniques. We propose a decentralized architecture for deploying this intrusion detection system on the edge nodes of a smart healthcare system that may be deployed in a smart city. The presented multi-layer intrusion detection models achieve performances in the range of 97–99.5% based on the F1 scores.Peer reviewe

    Performance Comparison Of Weak And Strong Learners In Detecting GPS Spoofing Attacks On Unmanned Aerial Vehicles (uavs)

    Get PDF
    Unmanned Aerial Vehicle systems (UAVs) are widely used in civil and military applications. These systems rely on trustworthy connections with various nodes in their network to conduct their safe operations and return-to-home. These entities consist of other aircrafts, ground control facilities, air traffic control facilities, and satellite navigation systems. Global positioning systems (GPS) play a significant role in UAV\u27s communication with different nodes, navigation, and positioning tasks. However, due to the unencrypted nature of the GPS signals, these vehicles are prone to several cyberattacks, including GPS meaconing, GPS spoofing, and jamming. Therefore, this thesis aims at conducting a detailed comparison of two widely used machine learning techniques, namely weak and strong learners, to investigate their performance in detecting GPS spoofing attacks that target UAVs. Real data are used to generate training datasets and test the effectiveness of machine learning techniques. Various features are derived from this data. To evaluate the performance of the models, seven different evaluation metrics, including accuracy, probabilities of detection and misdetection, probability of false alarm, processing time, prediction time per sample, and memory size, are implemented. The results show that both types of machine learning algorithms provide high detection and low false alarm probabilities. In addition, despite being structurally weaker than strong learners, weak learner classifiers also, achieve a good detection rate. However, the strong learners slightly outperform the weak learner classifiers in terms of multiple evaluation metrics, including accuracy, probabilities of misdetection and false alarm, while weak learner classifiers outperform in terms of time performance metrics
    corecore