1,845 research outputs found

    Network community detection via iterative edge removal in a flocking-like system

    Full text link
    We present a network community-detection technique based on properties that emerge from a nature-inspired system of aligning particles. Initially, each vertex is assigned a random-direction unit vector. A nonlinear dynamic law is established so that neighboring vertices try to become aligned with each other. After some time, the system stops and edges that connect the least-aligned pairs of vertices are removed. Then the evolution starts over without the removed edges, and after enough number of removal rounds, each community becomes a connected component. The proposed approach is evaluated using widely-accepted benchmarks and real-world networks. Experimental results reveal that the method is robust and excels on a wide variety of networks. Moreover, for large sparse networks, the edge-removal process runs in quasilinear time, which enables application in large-scale networks

    A Mathematical Framework for Agent Based Models of Complex Biological Networks

    Full text link
    Agent-based modeling and simulation is a useful method to study biological phenomena in a wide range of fields, from molecular biology to ecology. Since there is currently no agreed-upon standard way to specify such models it is not always easy to use published models. Also, since model descriptions are not usually given in mathematical terms, it is difficult to bring mathematical analysis tools to bear, so that models are typically studied through simulation. In order to address this issue, Grimm et al. proposed a protocol for model specification, the so-called ODD protocol, which provides a standard way to describe models. This paper proposes an addition to the ODD protocol which allows the description of an agent-based model as a dynamical system, which provides access to computational and theoretical tools for its analysis. The mathematical framework is that of algebraic models, that is, time-discrete dynamical systems with algebraic structure. It is shown by way of several examples how this mathematical specification can help with model analysis.Comment: To appear in Bulletin of Mathematical Biolog

    Emergent Properties in Structurally Dynamic Disordered Cellular Networks

    Full text link
    We relate structurally dynamic cellular networks, a class of models we developed in fundamental space-time physics, to SDCA, introduced some time ago by Ilachinski and Halpern. We emphasize the crucial property of a non-linear interaction of network geometry with the matter degrees of freedom in order to emulate the supposedly highly erratic and strongly fluctuating space-time structure on the Planck scale. We then embark on a detailed numerical analysis of various large scale characteristics of several classes of models in order to understand what will happen if some sort of macroscopic or continuum limit is performed. Of particular relevance in this context is a notion of network dimension and its behavior in this limit. Furthermore, the possibility of phase transitions is discussed.Comment: 20 pages, Latex, 6 figure

    When is a Network a Network? Multi-Order Graphical Model Selection in Pathways and Temporal Networks

    Full text link
    We introduce a framework for the modeling of sequential data capturing pathways of varying lengths observed in a network. Such data are important, e.g., when studying click streams in information networks, travel patterns in transportation systems, information cascades in social networks, biological pathways or time-stamped social interactions. While it is common to apply graph analytics and network analysis to such data, recent works have shown that temporal correlations can invalidate the results of such methods. This raises a fundamental question: when is a network abstraction of sequential data justified? Addressing this open question, we propose a framework which combines Markov chains of multiple, higher orders into a multi-layer graphical model that captures temporal correlations in pathways at multiple length scales simultaneously. We develop a model selection technique to infer the optimal number of layers of such a model and show that it outperforms previously used Markov order detection techniques. An application to eight real-world data sets on pathways and temporal networks shows that it allows to infer graphical models which capture both topological and temporal characteristics of such data. Our work highlights fallacies of network abstractions and provides a principled answer to the open question when they are justified. Generalizing network representations to multi-order graphical models, it opens perspectives for new data mining and knowledge discovery algorithms.Comment: 10 pages, 4 figures, 1 table, companion python package pathpy available on gitHu

    Regional surname affinity: a spatial network approach

    Get PDF
    OBJECTIVE We investigate surname affinities among areas of modern‐day China, by constructing a spatial network, and making community detection. It reports a geographical genealogy of the Chinese population that is result of population origins, historical migrations, and societal evolutions. MATERIALS AND METHODS We acquire data from the census records supplied by China's National Citizen Identity Information System, including the surname and regional information of 1.28 billion registered Chinese citizens. We propose a multilayer minimum spanning tree (MMST) to construct a spatial network based on the matrix of isonymic distances, which is often used to characterize the dissimilarity of surname structure among areas. We use the fast unfolding algorithm to detect network communities. RESULTS We obtain a 10‐layer MMST network of 362 prefecture nodes and 3,610 edges derived from the matrix of the Euclidean distances among these areas. These prefectures are divided into eight groups in the spatial network via community detection. We measure the partition by comparing the inter‐distances and intra‐distances of the communities and obtain meaningful regional ethnicity classification. DISCUSSION The visualization of the resulting communities on the map indicates that the prefectures in the same community are usually geographically adjacent. The formation of this partition is influenced by geographical factors, historic migrations, trade and economic factors, as well as isolation of culture and language. The MMST algorithm proves to be effective in geo‐genealogy and ethnicity classification for it retains essential information about surname affinity and highlights the geographical consanguinity of the population.National Natural Science Foundation of China, Grant/Award Numbers: 61773069, 71731002; National Social Science Foundation of China, Grant/Award Number: 14BSH024; Foundation of China of China Scholarships Council, Grant/Award Numbers: 201606045048, 201706040188, 201706040015; DOE, Grant/Award Number: DE-AC07-05Id14517; DTRA, Grant/Award Number: HDTRA1-14-1-0017; NSF, Grant/Award Numbers: CHE-1213217, CMMI-1125290, PHY-1505000 (61773069 - National Natural Science Foundation of China; 71731002 - National Natural Science Foundation of China; 14BSH024 - National Social Science Foundation of China; 201606045048 - Foundation of China of China Scholarships Council; 201706040188 - Foundation of China of China Scholarships Council; 201706040015 - Foundation of China of China Scholarships Council; DE-AC07-05Id14517 - DOE; HDTRA1-14-1-0017 - DTRA; CHE-1213217 - NSF; CMMI-1125290 - NSF; PHY-1505000 - NSF)Published versio

    Calculating Ensemble Averaged Descriptions of Protein Rigidity without Sampling

    Get PDF
    Previous works have demonstrated that protein rigidity is related to thermodynamic stability, especially under conditions that favor formation of native structure. Mechanical network rigidity properties of a single conformation are efficiently calculated using the integer body-bar Pebble Game (PG) algorithm. However, thermodynamic properties require averaging over many samples from the ensemble of accessible conformations to accurately account for fluctuations in network topology. We have developed a mean field Virtual Pebble Game (VPG) that represents the ensemble of networks by a single effective network. That is, all possible number of distance constraints (or bars) that can form between a pair of rigid bodies is replaced by the average number. The resulting effective network is viewed as having weighted edges, where the weight of an edge quantifies its capacity to absorb degrees of freedom. The VPG is interpreted as a flow problem on this effective network, which eliminates the need to sample. Across a nonredundant dataset of 272 protein structures, we apply the VPG to proteins for the first time. Our results show numerically and visually that the rigidity characterizations of the VPG accurately reflect the ensemble averaged properties. This result positions the VPG as an efficient alternative to understand the mechanical role that chemical interactions play in maintaining protein stability
    corecore