6,656 research outputs found

    Single-image Tomography: 3D Volumes from 2D Cranial X-Rays

    Get PDF
    As many different 3D volumes could produce the same 2D x-ray image, inverting this process is challenging. We show that recent deep learning-based convolutional neural networks can solve this task. As the main challenge in learning is the sheer amount of data created when extending the 2D image into a 3D volume, we suggest firstly to learn a coarse, fixed-resolution volume which is then fused in a second step with the input x-ray into a high-resolution volume. To train and validate our approach we introduce a new dataset that comprises of close to half a million computer-simulated 2D x-ray images of 3D volumes scanned from 175 mammalian species. Applications of our approach include stereoscopic rendering of legacy x-ray images, re-rendering of x-rays including changes of illumination, view pose or geometry. Our evaluation includes comparison to previous tomography work, previous learning methods using our data, a user study and application to a set of real x-rays

    Topology Discovery of Sparse Random Graphs With Few Participants

    Get PDF
    We consider the task of topology discovery of sparse random graphs using end-to-end random measurements (e.g., delay) between a subset of nodes, referred to as the participants. The rest of the nodes are hidden, and do not provide any information for topology discovery. We consider topology discovery under two routing models: (a) the participants exchange messages along the shortest paths and obtain end-to-end measurements, and (b) additionally, the participants exchange messages along the second shortest path. For scenario (a), our proposed algorithm results in a sub-linear edit-distance guarantee using a sub-linear number of uniformly selected participants. For scenario (b), we obtain a much stronger result, and show that we can achieve consistent reconstruction when a sub-linear number of uniformly selected nodes participate. This implies that accurate discovery of sparse random graphs is tractable using an extremely small number of participants. We finally obtain a lower bound on the number of participants required by any algorithm to reconstruct the original random graph up to a given edit distance. We also demonstrate that while consistent discovery is tractable for sparse random graphs using a small number of participants, in general, there are graphs which cannot be discovered by any algorithm even with a significant number of participants, and with the availability of end-to-end information along all the paths between the participants.Comment: A shorter version appears in ACM SIGMETRICS 2011. This version is scheduled to appear in J. on Random Structures and Algorithm

    TOM: a self-trained Tomography solution for Overlay networks Monitoring

    Get PDF
    International audienceNetwork tomography is a discipline that aims to infer the internal network characteristics from end-to-end correlated measurements performed at the network edge. This work presents a new tomography approach for link metrics inference in an SDN/NFV environment (even if it can be exported outside this field) that we called TOM (Tomography for Overlay networks Monitoring). In such an environment, we are particularly interested in supervising network slicing, a recent tool enabling to create multiple virtual networks for different applications and QoS constraints on a Telco infrastructure. The goal is to infer the underlay resources states from the measurements performed in the overlay structure. We model the inference task as a regression problem that we solve following a Neural Network approach. Since getting labeled data for the training phase can be costly, our procedure generates artificial data for the training phase. By creating a large set of random training examples, the Neural Network learns the relations between the measures done at path and link levels. This approach takes advantage of efficient Machine Learning solutions to solve a classic inference problem. Simulations with a public dataset show very promising results compared to statistical-based methods. We explored mainly additive metrics such as delays or logs of loss rates, but the approach can also be used for non-additive ones such as bandwidth
    • …
    corecore