506 research outputs found

    Modeling Profit of Sliced 5G Networks for Advanced Network Resource Management and Slice Implementation

    Full text link
    The core innovation in future 5G cellular networksnetwork slicing, aims at providing a flexible and efficient framework of network organization and resource management. The revolutionary network architecture based on slices, makes most of the current network cost models obsolete, as they estimate the expenditures in a static manner. In this paper, a novel methodology is proposed, in which a value chain in sliced networks is presented. Based on the proposed value chain, the profits generated by different slices are analyzed, and the task of network resource management is modeled as a multiobjective optimization problem. Setting strong assumptions, this optimization problem is analyzed starting from a simple ideal scenario. By removing the assumptions step-by-step, realistic but complex use cases are approached. Through this progressive analysis, technical challenges in slice implementation and network optimization are investigated under different scenarios. For each challenge, some potentially available solutions are suggested, and likely applications are also discussed

    A novel multipath-transmission supported software defined wireless network architecture

    Get PDF
    The inflexible management and operation of today\u27s wireless access networks cannot meet the increasingly growing specific requirements, such as high mobility and throughput, service differentiation, and high-level programmability. In this paper, we put forward a novel multipath-transmission supported software-defined wireless network architecture (MP-SDWN), with the aim of achieving seamless handover, throughput enhancement, and flow-level wireless transmission control as well as programmable interfaces. In particular, this research addresses the following issues: 1) for high mobility and throughput, multi-connection virtual access point is proposed to enable multiple transmission paths simultaneously over a set of access points for users and 2) wireless flow transmission rules and programmable interfaces are implemented into mac80211 subsystem to enable service differentiation and flow-level wireless transmission control. Moreover, the efficiency and flexibility of MP-SDWN are demonstrated in the performance evaluations conducted on a 802.11 based-testbed, and the experimental results show that compared to regular WiFi, our proposed MP-SDWN architecture achieves seamless handover and multifold throughput improvement, and supports flow-level wireless transmission control for different applications
    • …
    corecore