58,385 research outputs found

    Joint Coding and Scheduling Optimization in Wireless Systems with Varying Delay Sensitivities

    Full text link
    Throughput and per-packet delay can present strong trade-offs that are important in the cases of delay sensitive applications.We investigate such trade-offs using a random linear network coding scheme for one or more receivers in single hop wireless packet erasure broadcast channels. We capture the delay sensitivities across different types of network applications using a class of delay metrics based on the norms of packet arrival times. With these delay metrics, we establish a unified framework to characterize the rate and delay requirements of applications and optimize system parameters. In the single receiver case, we demonstrate the trade-off between average packet delay, which we view as the inverse of throughput, and maximum ordered inter-arrival delay for various system parameters. For a single broadcast channel with multiple receivers having different delay constraints and feedback delays, we jointly optimize the coding parameters and time-division scheduling parameters at the transmitters. We formulate the optimization problem as a Generalized Geometric Program (GGP). This approach allows the transmitters to adjust adaptively the coding and scheduling parameters for efficient allocation of network resources under varying delay constraints. In the case where the receivers are served by multiple non-interfering wireless broadcast channels, the same optimization problem is formulated as a Signomial Program, which is NP-hard in general. We provide approximation methods using successive formulation of geometric programs and show the convergence of approximations.Comment: 9 pages, 10 figure

    Data mixing at the source, relay, and in the air in multiple-access relay networks

    Get PDF
    The concept of cooperative relay is an essential technique for future cellular networks such as wireless mesh networking or wireless ad-hoc networking. In a practical relay network, channel coding, network coding, and antenna arrays, will coexist and yet the joint optimization of these conventional coding schemes and cooperative relay is not well understood. To build a design guideline for relay network, this dissertation develop a joint optimization methodology for multiple coding schemes in multiple access relay network. There are four major contributions in this thesis: First, we jointly optimize conventional coding schemes and radio resources of multiple access relay network with multiple antennas. The combined design of MIMO transmission modes, channel coding at the source, network coding at the relay have been investigated. We develop optimal design rule that minimize the end-to-end error probability. Second, we derive the fundamental tradeoff between achievable rate and reliability of multiple access relay network with multiple antennas. We consider three MIMO transmission modes, spatial multiplexing (SM), Alamouti coding as transmit diversity (TD), and Golden Coding, and random linear network coding at the relay. We compare the average decoding error probability of each transmission mode. Third, we present an interference cancellation scheme for multi-user MIMO. The proposed Log-likelihood-ratio (LLR) ordered successive interference cancellation (SIC) scheme provides 1 ~ 3 dB gain over the conventional SNR-ordered SIC and the gain increases with increasing number of users. Finally, we present a new architecture for MIMO receivers that cancel the co-channel interference (CCI) using a single radio frequency (RF) and baseband (BB) chain, while still achieving nearly the same bit error rate that can be provided by the conventional receiver requiring multiple RF/BB chains

    Evolutionary Approaches to Minimizing Network Coding Resources

    Get PDF
    We wish to minimize the resources used for network coding while achieving the desired throughput in a multicast scenario. We employ evolutionary approaches, based on a genetic algorithm, that avoid the computational complexity that makes the problem NP-hard. Our experiments show great improvements over the sub-optimal solutions of prior methods. Our new algorithms improve over our previously proposed algorithm in three ways. First, whereas the previous algorithm can be applied only to acyclic networks, our new method works also with networks with cycles. Second, we enrich the set of components used in the genetic algorithm, which improves the performance. Third, we develop a novel distributed framework. Combining distributed random network coding with our distributed optimization yields a network coding protocol where the resources used for coding are optimized in the setup phase by running our evolutionary algorithm at each node of the network. We demonstrate the effectiveness of our approach by carrying out simulations on a number of different sets of network topologies.Comment: 9 pages, 6 figures, accepted to the 26th Annual IEEE Conference on Computer Communications (INFOCOM 2007

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    An effective genetic algorithm for network coding

    Get PDF
    The network coding problem (NCP), which aims to minimize network coding resources such as nodes and links, is a relatively new application of genetic algorithms (GAs) and hence little work has so far been reported in this area. Most of the existing literature on NCP has concentrated primarily on the static network coding problem (SNCP). There is a common assumption in work to date that a target rate is always achievable at every sink as long as coding is allowed at all nodes. In most real-world networks, such as wireless networks, any link could be disconnected at any time. This implies that every time a change occurs in the network topology, a new target rate must be determined. The SNCP software implementation then has to be re-run to try to optimize the coding based on the new target rate. In contrast, the GA proposed in this paper is designed with the dynamic network coding problem (DNCP) as the major concern. To this end, a more general formulation of the NCP is described. The new NCP model considers not only the minimization of network coding resources but also the maximization of the rate actually achieved at sinks. This is particularly important to the DNCP, where the target rate may become unachievable due to network topology changes. Based on the new NCP model, an effective GA is designed by integrating selected new problem-specific heuristic rules into the evolutionary process in order to better diversify chromosomes. In dynamic environments, the new GA does not need to recalculate target rate and also exhibits some degree of robustness against network topology changes. Comparative experiments on both SNCP and DNCP illustrate the effectiveness of our new model and algorithm

    Minimum-cost multicast over coded packet networks

    Get PDF
    We consider the problem of establishing minimum-cost multicast connections over coded packet networks, i.e., packet networks where the contents of outgoing packets are arbitrary, causal functions of the contents of received packets. We consider both wireline and wireless packet networks as well as both static multicast (where membership of the multicast group remains constant for the duration of the connection) and dynamic multicast (where membership of the multicast group changes in time, with nodes joining and leaving the group). For static multicast, we reduce the problem to a polynomial-time solvable optimization problem, and we present decentralized algorithms for solving it. These algorithms, when coupled with existing decentralized schemes for constructing network codes, yield a fully decentralized approach for achieving minimum-cost multicast. By contrast, establishing minimum-cost static multicast connections over routed packet networks is a very difficult problem even using centralized computation, except in the special cases of unicast and broadcast connections. For dynamic multicast, we reduce the problem to a dynamic programming problem and apply the theory of dynamic programming to suggest how it may be solved
    corecore