2 research outputs found

    Network Pruning for Low-Rank Binary Indexing

    Full text link
    Pruning is an efficient model compression technique to remove redundancy in the connectivity of deep neural networks (DNNs). Computations using sparse matrices obtained by pruning parameters, however, exhibit vastly different parallelism depending on the index representation scheme. As a result, fine-grained pruning has not gained much attention due to its irregular index form leading to large memory footprint and low parallelism for convolutions and matrix multiplications. In this paper, we propose a new network pruning technique that generates a low-rank binary index matrix to compress index data while decompressing index data is performed by simple binary matrix multiplication. This proposed compression method finds a particular fine-grained pruning mask that can be decomposed into two binary matrices. We also propose a tile-based factorization technique that not only lowers memory requirements but also enhances compression ratio. Various DNN models can be pruned with much fewer indexes compared to previous sparse matrix formats while maintaining the same pruning rate

    BiQGEMM: Matrix Multiplication with Lookup Table For Binary-Coding-based Quantized DNNs

    Full text link
    The number of parameters in deep neural networks (DNNs) is rapidly increasing to support complicated tasks and to improve model accuracy. Correspondingly, the amount of computations and required memory footprint increase as well. Quantization is an efficient method to address such concerns by compressing DNNs such that computations can be simplified while required storage footprint is significantly reduced. Unfortunately, commercial CPUs and GPUs do not fully support quantization because only fixed data transfers (such as 32 bits) are allowed. As a result, even if weights are quantized into a few bits, CPUs and GPUs cannot access multiple quantized weights without memory bandwidth waste. Success of quantization in practice, hence, relies on an efficient computation engine design, especially for matrix multiplication that is a basic computation engine in most DNNs. In this paper, we propose a novel matrix multiplication method, called BiQGEMM, dedicated to quantized DNNs. BiQGEMM can access multiple quantized weights simultaneously in one instruction. In addition, BiQGEMM pre-computes intermediate results that are highly redundant when quantization leads to limited available computation space. Since pre-computed values are stored in lookup tables and reused, BiQGEMM achieves lower amount of overall computations. Our extensive experimental results show that BiQGEMM presents higher performance than conventional schemes when DNNs are quantized.Comment: 13 pages, 12 figure
    corecore