178,656 research outputs found
Collision Helps - Algebraic Collision Recovery for Wireless Erasure Networks
Current medium access control mechanisms are based on collision avoidance and
collided packets are discarded. The recent work on ZigZag decoding departs from
this approach by recovering the original packets from multiple collisions. In
this paper, we present an algebraic representation of collisions which allows
us to view each collision as a linear combination of the original packets. The
transmitted, colliding packets may themselves be a coded version of the
original packets.
We propose a new acknowledgment (ACK) mechanism for collisions based on the
idea that if a set of packets collide, the receiver can afford to ACK exactly
one of them and still decode all the packets eventually. We analytically
compare delay and throughput performance of such collision recovery schemes
with other collision avoidance approaches in the context of a single hop
wireless erasure network. In the multiple receiver case, the broadcast
constraint calls for combining collision recovery methods with network coding
across packets at the sender. From the delay perspective, our scheme, without
any coordination, outperforms not only a ALOHA-type random access mechanisms,
but also centralized scheduling. For the case of streaming arrivals, we propose
a priority-based ACK mechanism and show that its stability region coincides
with the cut-set bound of the packet erasure network
On Money as a Means of Coordination between Network Packets
In this work, we apply a common economic tool, namely money, to coordinate
network packets. In particular, we present a network economy, called
PacketEconomy, where each flow is modeled as a population of rational network
packets, and these packets can self-regulate their access to network resources
by mutually trading their positions in router queues. Every packet of the
economy has its price, and this price determines if and when the packet will
agree to buy or sell a better position. We consider a corresponding Markov
model of trade and show that there are Nash equilibria (NE) where queue
positions and money are exchanged directly between the network packets. This
simple approach, interestingly, delivers improvements even when fiat money is
used. We present theoretical arguments and experimental results to support our
claims
Network traffic behaviour near phase transition point
We explore packet traffic dynamics in a data network model near phase
transition point from free flow to congestion. The model of data network is an
abstraction of the Network Layer of the OSI (Open Systems Interconnection)
Reference Model of packet switching networks. The Network Layer is responsible
for routing packets across the network from their sources to their destinations
and for control of congestion in data networks. Using the model we investigate
spatio-temporal packets traffic dynamics near the phase transition point for
various network connection topologies, and static and adaptive routing
algorithms. We present selected simulation results and analyze them
Decoding and File Transfer Delay Balancing in Network Coding Broadcast
Network Coding is a packet encoding technique which has recently been shown
to improve network performance (by reducing delays and increasing throughput)
in broadcast and multicast communications. The cost for such an improvement
comes in the form of increased decoding complexity (and thus delay) at the
receivers end. Before delivering the file to higher layers, the receiver should
first decode those packets. In our work we consider the broadcast transmission
of a large file to N wireless users. The file is segmented into a number of
blocks (each containing K packets - the Coding Window Size). The packets of
each block are encoded using Random Linear Network Coding (RLNC).We obtain the
minimum coding window size so that the completion time of the file transmission
is upper bounded by a used defined delay constraint
Congestion Control using FEC for Conversational Multimedia Communication
In this paper, we propose a new rate control algorithm for conversational
multimedia flows. In our approach, along with Real-time Transport Protocol
(RTP) media packets, we propose sending redundant packets to probe for
available bandwidth. These redundant packets are Forward Error Correction (FEC)
encoded RTP packets. A straightforward interpretation is that if no losses
occur, the sender can increase the sending rate to include the FEC bit rate,
and in the case of losses due to congestion the redundant packets help in
recovering the lost packets. We also show that by varying the FEC bit rate, the
sender is able to conservatively or aggressively probe for available bandwidth.
We evaluate our FEC-based Rate Adaptation (FBRA) algorithm in a network
simulator and in the real-world and compare it to other congestion control
algorithms
- …
