603 research outputs found

    Multi-service systems: an enabler of flexible 5G air-interface

    Get PDF
    Multi-service system is an enabler to flexibly support diverse communication requirements for the next generation wireless communications. In such a system, multiple types of services co-exist in one baseband system with each service having its optimal frame structure and low out of band emission (OoBE) waveforms operating on the service frequency band to reduce the inter-service-band-interference (ISvcBI). In this article, a framework for multi-service system is established and the challenges and possible solutions are studied. The multi-service system implementation in both time and frequency domain is discussed. Two representative subband filtered multicarrier (SFMC) waveforms: filtered orthogonal frequency division multiplexing (F-OFDM) and universal filtered multi-carrier (UFMC) are considered in this article. Specifically, the design methodology, criteria, orthogonality conditions and prospective application scenarios in the context of 5G are discussed. We consider both single-rate (SR) and multi-rate (MR) signal processing methods. Compared with the SR system, the MR system has significantly reduced computational complexity at the expense of performance loss due to inter-subband-interference (ISubBI) in MR systems. The ISvcBI and ISubBI in MR systems are investigated with proposed low-complexity interference cancelation algorithms to enable the multi-service operation in low interference level conditions

    Filtered OFDM systems, algorithms and performance analysis for 5G and beyond

    Get PDF
    Filtered orthogonal frequency division multiplexing (F-OFDM) system is a promising waveform for 5G and beyond to enable multi-service system and spectrum efficient network slicing. However, the performance for F-OFDM systems has not been systematically analyzed in literature. In this paper, we first establish a mathematical model for F-OFDM system and derive the conditions to achieve the interference-free one-tap channel equalization. In the practical cases (e.g., insufficient guard interval, asynchronous transmission, etc.), the analytical expressions for inter-symbol-interference (ISI), inter-carrier-interference (ICI) and adjacent-carrier-interference (ACI) are derived, where the last term is considered as one of the key factors for asynchronous transmissions. Based on the framework, an optimal power compensation matrix is derived to make all of the subcarriers having the same ergodic performance. Another key contribution of the paper is that we propose a multi-rate F-OFDM system to enable low complexity low cost communication scenarios such as narrow band Internet of Things (IoT), at the cost of generating inter-subband-interference (ISubBI). Low computational complexity algorithms are proposed to cancel the ISubBI. The result shows that the derived analytical expressions match the simulation results, and the proposed ISubBI cancelation algorithms can significantly save the original F-OFDM complexity (up to 100 times) without significant performance los

    Multi-service Signal Multiplexing and Isolation for Physical-Layer Network Slicing (PNS)

    Get PDF
    Network slicing has been identified as one of the most important features for 5G and beyond to enable operators to utilize networks on an as-a-service basis and meet the wide range of use cases. In physical layer, the frequency and time resources are split into slices to cater for the services with individual optimal designs, resulting in services/slices having different baseband numerologies (e.g., subcarrier spacing) and / or radio frequency (RF) front-end configurations. In such a system, the multi-service signal multiplexing and isolation among the service/slices are critical for the Physical-Layer Network Slicing (PNS) since orthogonality is destroyed and significant inter-service/ slice-band-interference (ISBI) may be generated. In this paper, we first categorize four PNS cases according to the baseband and RF configurations among the slices. The system model is established by considering a low out of band emission (OoBE) waveform operating in the service/slice frequency band to mitigate the ISBI. The desired signal and interference for the two slices are derived. Consequently, one-tap channel equalization algorithms are proposed based on the derived model. The developed system models establish a framework for further interference analysis, ISBI cancelation algorithms, system design and parameter selection (e.g., guard band), to enable spectrum efficient network slicing

    Performance Analysis of C/U Split Hybrid Satellite Terrestrial Network for 5G Systems

    Get PDF
    Over the last decade, the explosive increase in demand of high-data-rate video services and massive access machine type communication (MTC) requests have become the main challenges for the future 5G wireless network. The hybrid satellite terrestrial network based on the control and user plane (C/U) separation concept is expected to support flexible and customized resource scheduling and management toward global ubiquitous networking and unified service architecture. In this paper, centralized and distributed resource management strategies (CRMS and DRMS) are proposed and compared com- prehensively in terms of throughput, power consumption, spectral and energy efficiency (SE and EE) and coverage probability, utilizing the mature stochastic geometry. Numerical results show that, compared with DRMS strategy, the U-plane cooperation between satellite and terrestrial network under CRMS strategy could improve the throughput and EE by nearly 136% and 60% respectively in ultra-sparse networks and greatly enhance the U-plane coverage probability (approximately 77%). Efficient resource management mechanism is suggested for the hybrid network according to the network deployment for the future 5G wireless network
    • …
    corecore