43,555 research outputs found

    Performance analysis of adaptive scheduling in integrated services UMTS networks

    Get PDF
    For an integrated services UMTS network serving speech and data calls, we propose, evaluate and compare different scheduling schemes, which dynamically adapt the shared data transport channel rates to the varying speech traffic load. within each cell, the assigned data transfer resources are distributed over the present data flows according to certain fairness objectives. The performance of the adaptive schemes is numerically evaluated by means of analytical performance optimisation methods in combination with Monte Carlo simulations.\ud \u

    Assessment of highly distributed power systems using an integrated simulation approach

    Get PDF
    In a highly distributed power system (HDPS), micro renewable and low carbon technologies would make a significant contribution to the electricity supply. Further, controllable devices such as micro combined heat and power (CHP) could be used to assist in maintaining stability in addition to simply providing heat and power to dwellings. To analyse the behaviour of such a system requires the modelling of both the electrical distribution system and the coupled microgeneration devices in a realistic context. In this paper a pragmatic approach to HDPS modelling is presented: microgeneration devices are simulated using a building simulation tool to generate time-varying power output profiles, which are then replicated and processed statistically so that they can be used as boundary conditions for a load flow simulation; this is used to explore security issues such as under and over voltage, branch thermal overloading, and reverse power flow. Simulations of a section of real network are presented, featuring different penetrations of micro-renewables and micro-CHP within the ranges that are believed to be realistically possible by 2050. This analysis indicates that well-designed suburban networks are likely to be able to accommodate such levels of domestic-scale generation without problems emerging such as overloads or degradation to the quality of supply

    Predicting adaptive responses - simulating occupied environments

    Get PDF
    Simulation of building performance is increasingly being used in design practice to predict comfort of occupants in finished buildings. This is an area of great uncertainty: what actions does a person take when too warm or suffering from glare; how is comfort measured; how do groups of people interact to control environmental conditions, etc? An increasing attention to model these issues is evident in current research. Two issues are covered in this paper: how comfort can be assessed and what actions occupants are likely to make to achieve and maintain a comfortable status. The former issue describes the implementation of existing codes within a computational framework. This is non-trivial as information on local air velocities, radiant temperature and air temperature and relative humidity have to be predicted as they evolve over time in response to changing environmental conditions. This paper also presents a nascent algorithm for modelling occupant behaviour with respect to operable windows. The algorithm is based on results of several field studies which show the influence of internal and external temperatures on decision making in this respect. The derivation and implementation of the algorithm is discussed, highlighting areas where further effort could be of benefit

    Techno-Economic Analysis of Rural 4th Generation Biomass District Heating

    Get PDF
    Biomass heating networks provide renewable heat using low carbon energy sources. They can be powerful tools for economy decarbonization. Heating networks can increase heating efficiency in districts and small size municipalities, using more efficient thermal generation technologies, with higher efficiencies and with more efficient emissions abatement technologies. This paper analyzes the application of a biomass fourth generation district heating, 4GDH (4th Generation Biomass District Heating), in a rural municipality. The heating network is designed to supply 77 residential buildings and eight public buildings, to replace the current individual diesel boilers and electrical heating systems. The development of the new fourth district heating generation implies the challenge of combining using low or very low temperatures in the distribution network pipes and delivery temperatures in existing facilities buildings. In this work biomass district heating designs based on third and fourth generation district heating network criteria are evaluated in terms of design conditions, operating ranges, effect of variable temperature operation, energy efficiency and investment and operating costs. The Internal Rate of Return of the different options ranges from 6.55% for a design based on the third generation network to 7.46% for a design based on the fourth generation network, with a 25 years investment horizon. The results and analyses of this work show the interest and challenges for the next low temperature DH generation for the rural area under analysis

    Magnetic control of flexible thermoelectric devices based on macroscopic 3D interconnected nanowire networks

    Full text link
    Spin-related effects in thermoelectricity can be used to design more efficient refrigerators and offer novel promising applications for the harvesting of thermal energy. The key challenge is to design structural and compositional magnetic material systems with sufficiently high efficiency and power output for transforming thermal energy into electric energy and vice versa. Here, the fabrication of large-area 3D interconnected Co/Cu nanowire networks is demonstrated, thereby enabling the controlled Peltier cooling of macroscopic electronic components with an external magnetic field. The flexible, macroscopic devices overcome inherent limitations of nanoscale magnetic structures due to insufficient power generation capability that limits the heat management applications. From properly designed experiments, large spin-dependent Seebeck and Peltier coefficients of −9.4-9.4 ÎŒ\muV/K and −2.8-2.8 mV at room temperature, respectively. The resulting power factor of Co/Cu nanowire networks at room temperature (∌7.5\sim7.5 mW/K2^2m) is larger than those of state of the art thermoelectric materials, such as BiTe alloys and the magneto-power factor ratio reaches about 100\% over a wide temperature range. Validation of magnetic control of heat flow achieved by taking advantage of the spin-dependent thermoelectric properties of flexible macroscopic nanowire networks lay the groundwork to design shapeable thermoelectric coolers exploiting the spin degree of freedom.Comment: 11 pages, 7 figure
    • 

    corecore