843,166 research outputs found

    Towards Provably Invisible Network Flow Fingerprints

    Full text link
    Network traffic analysis reveals important information even when messages are encrypted. We consider active traffic analysis via flow fingerprinting by invisibly embedding information into packet timings of flows. In particular, assume Alice wishes to embed fingerprints into flows of a set of network input links, whose packet timings are modeled by Poisson processes, without being detected by a watchful adversary Willie. Bob, who receives the set of fingerprinted flows after they pass through the network modeled as a collection of independent and parallel M/M/1M/M/1 queues, wishes to extract Alice's embedded fingerprints to infer the connection between input and output links of the network. We consider two scenarios: 1) Alice embeds fingerprints in all of the flows; 2) Alice embeds fingerprints in each flow independently with probability pp. Assuming that the flow rates are equal, we calculate the maximum number of flows in which Alice can invisibly embed fingerprints while having those fingerprints successfully decoded by Bob. Then, we extend the construction and analysis to the case where flow rates are distinct, and discuss the extension of the network model

    Optimization-Based Linear Network Coding for General Connections of Continuous Flows

    Get PDF
    For general connections, the problem of finding network codes and optimizing resources for those codes is intrinsically difficult and little is known about its complexity. Most of the existing solutions rely on very restricted classes of network codes in terms of the number of flows allowed to be coded together, and are not entirely distributed. In this paper, we consider a new method for constructing linear network codes for general connections of continuous flows to minimize the total cost of edge use based on mixing. We first formulate the minimumcost network coding design problem. To solve the optimization problem, we propose two equivalent alternative formulations with discrete mixing and continuous mixing, respectively, and develop distributed algorithms to solve them. Our approach allows fairly general coding across flows and guarantees no greater cost than any solution without network coding.Comment: 1 fig, technical report of ICC 201

    Incorporating Transportation Network Structure in Spatial Econometric Models of Commodity Flows

    Get PDF
    We introduce a regression-based gravity model for commodity flows between 35 regions in Austria. We incorporate information regarding the highway network into the spatial connectivity structure of the spatial autoregressive econometric model. We find that our approach produces improved model fit and higher likelihood values. The model accounts for spatial dependence in the origin-destination flows by introducing a spatial connectivity matrix that allows for three types of spatial dependence in the origins to destinations flows. We modify this origin-destination connectivity structure that was introduced by LeSage and Pace (2005) to include information regarding the presence or absence of a major highway/train corridor that passes through the regions. Empirical estimates indicate that the strongest spatial autoregressive effects arise when both origin and destination regions have neighboring regions located on the highway network. Our approach provides a formal spatial econometric methodology that can easily incorporate network connectivity information in spatial autoregressive models.Commodity flows, Spatial autoregression, Bayesian, Maximum likelihood, Spatial connectivity of origin-destination flows
    corecore