843,166 research outputs found
Towards Provably Invisible Network Flow Fingerprints
Network traffic analysis reveals important information even when messages are
encrypted. We consider active traffic analysis via flow fingerprinting by
invisibly embedding information into packet timings of flows. In particular,
assume Alice wishes to embed fingerprints into flows of a set of network input
links, whose packet timings are modeled by Poisson processes, without being
detected by a watchful adversary Willie. Bob, who receives the set of
fingerprinted flows after they pass through the network modeled as a collection
of independent and parallel queues, wishes to extract Alice's embedded
fingerprints to infer the connection between input and output links of the
network. We consider two scenarios: 1) Alice embeds fingerprints in all of the
flows; 2) Alice embeds fingerprints in each flow independently with probability
. Assuming that the flow rates are equal, we calculate the maximum number of
flows in which Alice can invisibly embed fingerprints while having those
fingerprints successfully decoded by Bob. Then, we extend the construction and
analysis to the case where flow rates are distinct, and discuss the extension
of the network model
Optimization-Based Linear Network Coding for General Connections of Continuous Flows
For general connections, the problem of finding network codes and optimizing
resources for those codes is intrinsically difficult and little is known about
its complexity. Most of the existing solutions rely on very restricted classes
of network codes in terms of the number of flows allowed to be coded together,
and are not entirely distributed. In this paper, we consider a new method for
constructing linear network codes for general connections of continuous flows
to minimize the total cost of edge use based on mixing. We first formulate the
minimumcost network coding design problem. To solve the optimization problem,
we propose two equivalent alternative formulations with discrete mixing and
continuous mixing, respectively, and develop distributed algorithms to solve
them. Our approach allows fairly general coding across flows and guarantees no
greater cost than any solution without network coding.Comment: 1 fig, technical report of ICC 201
Incorporating Transportation Network Structure in Spatial Econometric Models of Commodity Flows
We introduce a regression-based gravity model for commodity flows between 35 regions in Austria. We incorporate information regarding the highway network into the spatial connectivity structure of the spatial autoregressive econometric model. We find that our approach produces improved model fit and higher likelihood values. The model accounts for spatial dependence in the origin-destination flows by introducing a spatial connectivity matrix that allows for three types of spatial dependence in the origins to destinations flows. We modify this origin-destination connectivity structure that was introduced by LeSage and Pace (2005) to include information regarding the presence or absence of a major highway/train corridor that passes through the regions. Empirical estimates indicate that the strongest spatial autoregressive effects arise when both origin and destination regions have neighboring regions located on the highway network. Our approach provides a formal spatial econometric methodology that can easily incorporate network connectivity information in spatial autoregressive models.Commodity flows, Spatial autoregression, Bayesian, Maximum likelihood, Spatial connectivity of origin-destination flows
- …
