4,206 research outputs found

    Distributed privacy-preserving network size computation: A system-identification based method

    Get PDF
    In this study, we propose an algorithm for computing the network size of communicating agents. The algorithm is distributed: a) it does not require a leader selection; b) it only requires local exchange of information, and; c) its design can be implemented using local information only, without any global information about the network. It is privacy-preserving, namely it does not require to propagate identifying labels. This algorithm is based on system identification, and more precisely on the identification of the order of a suitably-constructed discrete-time linear time-invariant system over some finite field. We provide a probabilistic guarantee for any randomly picked node to correctly compute the number of nodes in the network. Moreover, numerical implementation has been taken into account to make the algorithm applicable to networks of hundreds of nodes, and therefore make the algorithm applicable in real-world sensor or robotic networks. We finally illustrate our results in simulation and conclude the paper with discussions on how our technique differs from a previously-known strategy based on statistical inference.Comment: 52nd IEEE Conference on Decision and Control (CDC 2013) (2013

    Chance-Constrained Outage Scheduling using a Machine Learning Proxy

    Full text link
    Outage scheduling aims at defining, over a horizon of several months to years, when different components needing maintenance should be taken out of operation. Its objective is to minimize operation-cost expectation while satisfying reliability-related constraints. We propose a distributed scenario-based chance-constrained optimization formulation for this problem. To tackle tractability issues arising in large networks, we use machine learning to build a proxy for predicting outcomes of power system operation processes in this context. On the IEEE-RTS79 and IEEE-RTS96 networks, our solution obtains cheaper and more reliable plans than other candidates

    On Estimating Multi-Attribute Choice Preferences using Private Signals and Matrix Factorization

    Full text link
    Revealed preference theory studies the possibility of modeling an agent's revealed preferences and the construction of a consistent utility function. However, modeling agent's choices over preference orderings is not always practical and demands strong assumptions on human rationality and data-acquisition abilities. Therefore, we propose a simple generative choice model where agents are assumed to generate the choice probabilities based on latent factor matrices that capture their choice evaluation across multiple attributes. Since the multi-attribute evaluation is typically hidden within the agent's psyche, we consider a signaling mechanism where agents are provided with choice information through private signals, so that the agent's choices provide more insight about his/her latent evaluation across multiple attributes. We estimate the choice model via a novel multi-stage matrix factorization algorithm that minimizes the average deviation of the factor estimates from choice data. Simulation results are presented to validate the estimation performance of our proposed algorithm.Comment: 6 pages, 2 figures, to be presented at CISS conferenc
    • …
    corecore