6,263 research outputs found

    Source and Physical-Layer Network Coding for Correlated Two-Way Relaying

    Full text link
    In this paper, we study a half-duplex two-way relay channel (TWRC) with correlated sources exchanging bidirectional information. In the case, when both sources have the knowledge of correlation statistics, a source compression with physical-layer network coding (SCPNC) scheme is proposed to perform the distributed compression at each source node. When only the relay has the knowledge of correlation statistics, we propose a relay compression with physical-layer network coding (RCPNC) scheme to compress the bidirectional messages at the relay. The closed-form block error rate (BLER) expressions of both schemes are derived and verified through simulations. It is shown that the proposed schemes achieve considerable improvements in both error performance and throughput compared with the conventional non-compression scheme in correlated two-way relay networks (CTWRNs).Comment: 15 pages, 6 figures. IET Communications, 201

    Self-concatenated code design and its application in power-efficient cooperative communications

    No full text
    In this tutorial, we have focused on the design of binary self-concatenated coding schemes with the help of EXtrinsic Information Transfer (EXIT) charts and Union bound analysis. The design methodology of future iteratively decoded self-concatenated aided cooperative communication schemes is presented. In doing so, we will identify the most important milestones in the area of channel coding, concatenated coding schemes and cooperative communication systems till date and suggest future research directions

    Relay Assisted Cooperative OSTBC Communication with SNR Imbalance and Channel Estimation Errors

    Full text link
    In this paper, a two-hop relay assisted cooperative Orthogonal Space-Time Block Codes (OSTBC) transmission scheme is considered for the downlink communication of a cellular system, where the base station (BS) and the relay station (RS) cooperate and transmit data to the user equipment (UE) in a distributed fashion. We analyze the impact of the SNR imbalance between the BS-UE and RS-UE links, as well as the imperfect channel estimation at the UE receiver. The performance is analyzed in the presence of Rayleigh flat fading and our results show that the SNR imbalance does not impact the spatial diversity order. On the other hand, channel estimation errors have a larger impact on the system performance. Simulation results are then provided to confirm the analysis.Comment: 5 pages, 3 figures, IEEE 69th Vehicular Technology Conferenc

    Dispensing with channel estimation: differentially modulated cooperative wireless communications

    No full text
    As a benefit of bypassing the potentially excessive complexity and yet inaccurate channel estimation, differentially encoded modulation in conjunction with low-complexity noncoherent detection constitutes a viable candidate for user-cooperative systems, where estimating all the links by the relays is unrealistic. In order to stimulate further research on differentially modulated cooperative systems, a number of fundamental challenges encountered in their practical implementations are addressed, including the time-variant-channel-induced performance erosion, flexible cooperative protocol designs, resource allocation as well as its high-spectral-efficiency transceiver design. Our investigations demonstrate the quantitative benefits of cooperative wireless networks both from a pure capacity perspective as well as from a practical system design perspective
    corecore