78,269 research outputs found

    Unusual thermoelectric behavior of packed crystalline granular metals

    Full text link
    Loosely packed granular materials are intensively studied nowadays. Electrical and thermal transport properties should reflect the granular structure as well as intrinsic properties. We have compacted crystalline CaAlCaAl based metallic grains and studied the electrical resistivity and the thermoelectric power as a function of temperature (TT) from 15 to 300K. Both properties show three regimes as a function of temperature. It should be pointed out : (i) The electrical resistivity continuously decreases between 15 and 235 K (ii) with various dependences, e.g. ≃\simeq T−3/4T^{-3/4} at low TT, while (iii) the thermoelectric power (TEP) is positive, (iv) shows a bump near 60K, and (v) presents a rather unusual square root of temperature dependence at low temperature. It is argued that these three regimes indicate a competition between geometric and thermal processes, - for which a theory seems to be missing in the case of TEP. The microchemical analysis results are also reported indicating a complex microstructure inherent to the phase diagram peritectic intricacies of this binary alloy.Comment: to be published in J. Appl. Phys.22 pages, 8 figure

    Analysis of broadband microwave conductivity and permittivity measurements of semiconducting materials

    Full text link
    We perform broadband phase sensitive measurements of the reflection coefficient from 45 MHz up to 20 GHz employing a vector network analyzer with a 2.4 mm coaxial sensor which is terminated by the sample under test. While the material parameters (conductivity and permittivity) can be easily extracted from the obtained impedance data if the sample is metallic, no direct solution is possible if the material under investigation is an insulator. Focusing on doped semiconductors with largely varying conductivity, here we present a closed calibration and evaluation procedure for frequencies up to 5 GHz, based on the rigorous solution for the electromagnetic field distribution inside the sample combined with the variational principle; basically no limiting assumptions are necessary. A simple static model based on the electric current distribution proves to yield the same frequency dependence of the complex conductivity up to 1 GHz. After a critical discussion we apply the developed method to the hopping transport in Si:P at temperature down to 1 K.Comment: 9 pages, 10 figures, accepted for publication in the Journal of Applied Physic

    Optimized White Reflectance in Photonic Network Structures

    Get PDF
    Three-dimensional disordered networks are receiving increasing attention as versatile architectures for highly scattering materials. However, due to their complex morphology, little is still known about the interplay between their structural and optical properties. Here, we describe a simple algorithm that allows to generate photonic network structures inspired by that of the Cyphochilus beetle, famous for the bright white reflectance of its thin cuticular scales. The model allows to vary the degree of structural anisotropy and filling fraction of the network independently, revealing the key contribution of these two parameters to the overall scattering efficiency. Rigorous numerical simulations show that the obtained structures can exceed the broadband reflectance of the beetle while using less material, providing new insights for the design of advanced scattering materials.Comment: 10 pages, 3 figures. peer reviewed version, published in final form at https://doi.org/10.1002/adom.20190004
    • …
    corecore