19,631 research outputs found

    Rsp5 Ubiquitin Ligase Is Required for Protein Trafficking in Saccharomyces cerevisiae COPI Mutants

    Get PDF
    Retrograde trafficking from the Golgi to the endoplasmic reticulum (ER) depends on the formation of vesicles coated with the multiprotein complex COPI. In Saccharomyces cerevisiae ubiquitinated derivatives of several COPI subunits have been identified. The importance of this modification of COPI proteins is unknown. With the exception of the Sec27 protein (β’COP) neither the ubiquitin ligase responsible for ubiquitination of COPI subunits nor the importance of this modification are known. Here we find that the ubiquitin ligase mutation, rsp5-1, has a negative effect that is additive with ret1-1 and sec28Δ mutations, in genes encoding α- and ε-COP, respectively. The double ret1-1 rsp5-1 mutant is also more severely defective in the Golgi-to-ER trafficking compared to the single ret1-1, secreting more of the ER chaperone Kar2p, localizing Rer1p mostly to the vacuole, and increasing sensitivity to neomycin. Overexpression of ubiquitin in ret1-1 rsp5-1 mutant suppresses vacuolar accumulation of Rer1p. We found that the effect of rsp5 mutation on the Golgi-to-ER trafficking is similar to that of sla1Δ mutation in a gene encoding actin cytoskeleton proteins, an Rsp5p substrate. Additionally, Rsp5 and Sla1 proteins were found by co-immunoprecipitation in a complex containing COPI subunits. Together, our results show that Rsp5 ligase plays a role in regulating retrograde Golgi-to-ER trafficking

    Meta‐analysis of oral antibiotics, in combination with preoperative intravenous antibiotics and mechanical bowel preparation the day before surgery, compared with intravenous antibiotics and mechanical bowel preparation alone to reduce surgical‐site infections in elective colorectal surgery

    Get PDF
    Background: Surgical‐site infection (SSI) is a potentially serious complication following colorectal surgery. The present systematic review and meta‐analysis aimed to investigate the effect of preoperative oral antibiotics and mechanical bowel preparation (MBP) on SSI rates. Methods: A systematic review of PubMed, Cochrane Database of Systematic Reviews and Cochrane Central Register of Controlled Trials was performed using appropriate keywords. Included were RCTs and observational studies reporting rates of SSI following elective colorectal surgery, in patients given preoperative oral antibiotic prophylaxis, in combination with intravenous (i.v.) antibiotic prophylaxis and MBP, compared with patients given only i.v. antibiotic prophylaxis with MBP. A meta‐analysis was undertaken. Results: Twenty‐two studies (57 207 patients) were included, of which 14 were RCTs and eight observational studies. Preoperative oral antibiotics, in combination with i.v. antibiotics and MBP, were associated with significantly lower rates of SSI than combined i.v. antibiotics and MBP in RCTs (odds ratio (OR) 0·45, 95 per cent c.i. 0·34 to 0·59; P < 0·001) and cohort studies (OR 0·47, 0·44 to 0·50; P < 0·001). There was a similarly significant effect on SSI with use of a combination of preoperative oral aminoglycoside and erythromycin (OR 0·40, 0·25 to 0·64; P < 0·001), or preoperative oral aminoglycoside and metronidazole (OR 0·51, 0·39 to 0·68; P < 0·001). Preoperative oral antibiotics were significantly associated with reduced postoperative rates of anastomotic leak, ileus, reoperation, readmission and mortality in the cohort studies. Conclusion: Oral antibiotic prophylaxis, in combination with MBP and i.v. antibiotics, is superior to MBP and i.v. antibiotic prophylaxis alone in reducing SSI in elective colorectal surgery

    Drug-induced stress granule formation protects sensory hair cells in mouse cochlear explants during ototoxicity

    Get PDF
    Stress granules regulate RNA translation during cellular stress, a mechanism that is generally presumed to be protective, since stress granule dysregulation caused by mutation or ageing is associated with neurodegenerative disease. Here, we investigate whether pharmacological manipulation of the stress granule pathway in the auditory organ, the cochlea, affects the survival of sensory hair cells during aminoglycoside ototoxicity, a common cause of acquired hearing loss. We show that hydroxamate (-)-9, a silvestrol analogue that inhibits eIF4A, induces stress granule formation in both an auditory cell line and ex-vivo cochlear cultures and that it prevents ototoxin-induced hair-cell death. In contrast, preventing stress granule formation using the small molecule inhibitor ISRIB increases hair-cell death. Furthermore, we provide the first evidence of stress granule formation in mammalian hair cells in-vivo triggered by aminoglycoside treatment. Our results demonstrate that pharmacological induction of stress granules enhances cell survival in native-tissue, in a clinically-relevant context. This establishes stress granules as a viable therapeutic target not only for hearing loss but also other neurodegenerative diseases.EI:595 - Action on Hearing Loss; 091092/Z/09/Z - Wellcome Trust (Wellcome); MR/N004329/1 - RCUK | Medical Research Council (MRC)Published versio

    Acoustically evoked potentials in two cephalopods inferred using the auditory brainstem response (ABR) approach

    Get PDF
    It is still a matter of debate whether cephalopods can detect sound frequencies above 400 Hz. So far there is no proof for the detection of underwater sound above 400 Hz via a physiological approach. The controversy of whether cephalopods have a sound detection ability above 400 Hz was tested using the auditory brainstem response (ABR) approach, which has been successfully applied in fish, crustaceans, amphibians, reptiles and birds. Using ABR we found that auditory evoked potentials can be obtained in the frequency range 400 to 1500 Hz (Sepiotheutis lessoniana) and 400 to 1000 Hz (Octopus vulgaris), respectively. The thresholds of S. lessoniana were generally lower than those of O. vulgaris

    Modification of NASA urine collecting system Final report, 1 May 1966 - 1 Apr. 1968

    Get PDF
    Development of urinary collection system for orbiting astronaut

    Neomycin resistance as a dominant selectable marker for selection and isolation of vaccinia virus recombinants

    Get PDF
    The antibiotic G418 was shown to be an effective inhibitor of vaccinia virus replication when an appropriate concentration of it was added to cell monolayers 48 h before infection. Genetic engineering techniques were used in concert with DNA transfection protocols to construct vaccinia virus recombinants containing the neomycin resistance gene (neo) from transposon Tn5. These recombinants contained the neo gene linked in either the correct or incorrect orientation relative to the vaccinia virus 7.5-kilodalton gene promoter which is expressed constitutively throughout the course of infection. The vaccinia virus recombinant containing the chimeric neo gene in the proper orientation was able to grow and form plaques in the presence of G418, whereas both the wild-type and the recombinant virus with the neo gene in the opposite polarity were inhibited by more than 98%. The effect of G418 on virus growth may be mediated at least in part by selective inhibition of the synthesis of a subset of late viral proteins. These results are discussed with reference to using this system, the conferral of resistance to G418 with neo as a positive selectable marker, to facilitate constructing vaccinia virus recombinants which contain foreign genes of interest

    The Talin Head Domain Reinforces Integrin-Mediated Adhesion by Promoting Adhesion Complex Stability and Clustering

    Get PDF
    Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development
    corecore