2,107 research outputs found

    Embedding graphs having Ore-degree at most five

    Get PDF
    Let HH and GG be graphs on nn vertices, where nn is sufficiently large. We prove that if HH has Ore-degree at most 5 and GG has minimum degree at least 2n/32n/3 then H⊂G.H\subset G.Comment: accepted for publication at SIAM J. Disc. Mat

    Cohen-Macaulay graphs and face vectors of flag complexes

    Full text link
    We introduce a construction on a flag complex that, by means of modifying the associated graph, generates a new flag complex whose hh-factor is the face vector of the original complex. This construction yields a vertex-decomposable, hence Cohen-Macaulay, complex. From this we get a (non-numerical) characterisation of the face vectors of flag complexes and deduce also that the face vector of a flag complex is the hh-vector of some vertex-decomposable flag complex. We conjecture that the converse of the latter is true and prove this, by means of an explicit construction, for hh-vectors of Cohen-Macaulay flag complexes arising from bipartite graphs. We also give several new characterisations of bipartite graphs with Cohen-Macaulay or Buchsbaum independence complexes.Comment: 14 pages, 3 figures; major updat

    Realizations of self branched coverings of the 2-sphere

    Full text link
    For a degree d self branched covering of the 2-sphere, a notable combinatorial invariant is an integer partition of 2d -- 2, consisting of the multiplicities of the critical points. A finer invariant is the so called Hurwitz passport. The realization problem of Hurwitz passports remain largely open till today. In this article, we introduce two different types of finer invariants: a bipartite map and an incident matrix. We then settle completely their realization problem by showing that a map, or a matrix, is realized by a branched covering if and only if it satisfies a certain balanced condition. A variant of the bipartite map approach was initiated by W. Thurston. Our results shed some new lights to the Hurwitz passport problem

    Minimum Degrees of Minimal Ramsey Graphs for Almost-Cliques

    Full text link
    For graphs FF and HH, we say FF is Ramsey for HH if every 22-coloring of the edges of FF contains a monochromatic copy of HH. The graph FF is Ramsey HH-minimal if FF is Ramsey for HH and there is no proper subgraph F′F' of FF so that F′F' is Ramsey for HH. Burr, Erdos, and Lovasz defined s(H)s(H) to be the minimum degree of FF over all Ramsey HH-minimal graphs FF. Define Ht,dH_{t,d} to be a graph on t+1t+1 vertices consisting of a complete graph on tt vertices and one additional vertex of degree dd. We show that s(Ht,d)=d2s(H_{t,d})=d^2 for all values 1<d≤t1<d\le t; it was previously known that s(Ht,1)=t−1s(H_{t,1})=t-1, so it is surprising that s(Ht,2)=4s(H_{t,2})=4 is much smaller. We also make some further progress on some sparser graphs. Fox and Lin observed that s(H)≥2δ(H)−1s(H)\ge 2\delta(H)-1 for all graphs HH, where δ(H)\delta(H) is the minimum degree of HH; Szabo, Zumstein, and Zurcher investigated which graphs have this property and conjectured that all bipartite graphs HH without isolated vertices satisfy s(H)=2δ(H)−1s(H)=2\delta(H)-1. Fox, Grinshpun, Liebenau, Person, and Szabo further conjectured that all triangle-free graphs without isolated vertices satisfy this property. We show that dd-regular 33-connected triangle-free graphs HH, with one extra technical constraint, satisfy s(H)=2δ(H)−1s(H) = 2\delta(H)-1; the extra constraint is that HH has a vertex vv so that if one removes vv and its neighborhood from HH, the remainder is connected.Comment: 10 pages; 3 figure

    Ore-degree threshold for the square of a Hamiltonian cycle

    Full text link
    A classic theorem of Dirac from 1952 states that every graph with minimum degree at least n/2 contains a Hamiltonian cycle. In 1963, P\'osa conjectured that every graph with minimum degree at least 2n/3 contains the square of a Hamiltonian cycle. In 1960, Ore relaxed the degree condition in the Dirac's theorem by proving that every graph with deg(u)+deg(v)≥ndeg(u) + deg(v) \geq n for every uv∉E(G)uv \notin E(G) contains a Hamiltonian cycle. Recently, Ch\^au proved an Ore-type version of P\'osa's conjecture for graphs on n≥n0n\geq n_0 vertices using the regularity--blow-up method; consequently the n0n_0 is very large (involving a tower function). Here we present another proof that avoids the use of the regularity lemma. Aside from the fact that our proof holds for much smaller n0n_0, we believe that our method of proof will be of independent interest.Comment: 24 pages, 1 figure. In addition to some fixed typos, this updated version contains a simplified "connecting lemma" in Section 3.
    • …
    corecore