4 research outputs found

    A cuckoo search optimization scheme for non-convex economic load dispatch

    Get PDF
    This paper presents a Cuckoo Search (CS) based algorithm to solve constrained economic load dispatch (ELD) problems. The proposed methodology easily deals with non-smoothness of cost function arising due to the use of valve point effects. The performance of the algorithm has been tested on systems possessing 13 and 40 generating units involving varying degrees of complexity. The findings affirm that the method outperforms the existing techniques, and can be a promising alternative approach for solving the ELD problems in practical power system

    SOLVING ECONOMIC LOAD DISPATCH WITH RELIABILITY INDICATORS

    Get PDF
    Due to the great importance of reliable indicators in electrical operating systems in all its different parts, it has been considered the most important factors in the design and maintenance of the electrical system, especially during its operation. The main reason for attention to reliability indicators relates to interruptions in the power system that are provided to consumers. The introduction of reliable indicators to solving an economic load dispatch (ELD) issue increases the possibility of providing customers with a required load with the highest degree of reliability. The ELD issue has been solved with reliability indicators. This means that the ELD problem with reliability is combined into one problem called combined the economic load dispatch with reliability (CELDR). Solving the above problem lowers the fuel cost while increasing the reliability of the generators while preparing the required load. The exchange market algorithm (EMA), in this work, has been implemented in a system of 26 generating units to solve the CELDR issue. Considering system reliability, inequality, and equality constraints. The results obtained show the direct effect of using reliability indicators in solving the above problem, where the best results were obtained using the EMA algorithm to solve the mentioned problem, compared to other algorithms

    A Fully Decentralized Approach for Solving the Economic Dispatch Problem

    Get PDF
    A practical formulation of the economic dispatch problem is based on treating the problem as a non-convex optimization problem in which the practical non-convex cost functions are taken into consideration. Formulating the economic dispatch problem as a non-convex optimization problem and finding a better quality solution to this problem has consumed a large portion of the research for decades. Almost all previously presented solutions to the non-convex economic dispatch problem are centralized solutions. Recently, as a result of current research directions towards enabling the smart grid, a new research trend has emerged. This new research trend is to solve the economic dispatch problem using decentralized and distributed mechanisms. Among these mechanisms, the consensus on lambda approach is the best known mechanism. A drawback of this approach is that it can solve only the economic dispatch problem with convex cost functions; in addition, it lacks the appropriate mechanism for incorporating the transmission losses. This thesis presents a new decentralized approach for solving the economic dispatch problem. The proposed approach consists of either two or three stages. In the first stage, a flooding-based consensus algorithm is proposed in order to achieve consensus among the agents with respect to the units and system data. In the second stage, a suitable algorithm is used for solving the economic dispatch problem locally by each agent. For cases in which a non-deterministic method is used in the second stage, a third stage is applied to achieve consensus on the final solution of the problem, with a flooding-based consensus algorithm for sharing the information required during this stage. The required communication time by the proposed approach has been approximated using JADE software. Four case studies were examined for validation purposes. The results show that the proposed approach is highly effective for both solving the non-convex formulation of the economic dispatch problem and incorporating transmission losses accurately in a fully decentralized manner. Moreover, the proposed approach can also be applied with some adaptation to solve the economic dispatch problem with convex cost functions; in this case, it is very competitive to the consensus on lambda approach.4 month
    corecore