22,970 research outputs found

    A Model of Optimal Network Structure for Decentralized Nearest Neighbor Search

    Full text link
    One of the approaches for the nearest neighbor search problem is to build a network which nodes correspond to the given set of indexed objects. In this case the search of the closest object can be thought as a search of a node in a network. A procedure in a network is called decentralized if it uses only local information about visited nodes and its neighbors. Networks, which structure allows efficient performing the nearest neighbour search by a decentralised search procedure started from any node, are of particular interest especially for pure distributed systems. Several algorithms that construct such networks have been proposed in literature. However, the following questions arise: "Are there network models in which decentralised search can be performed faster?"; "What are the optimal networks for the decentralised search?"; "What are their properties?". In this paper we partially give answers to these questions. We propose a mathematical programming model for the problem of determining an optimal network structure for decentralized nearest neighbor search. We have found an exact solution for a regular lattice of size 4x4 and heuristic solutions for sizes from 5x5 to 7x7. As a distance function we use L1 , L2 and L_inf metrics. We hope that our results and the proposed model will initiate study of optimal network structures for decentralised nearest neighbour search

    Simplicial Homology for Future Cellular Networks

    Get PDF
    Simplicial homology is a tool that provides a mathematical way to compute the connectivity and the coverage of a cellular network without any node location information. In this article, we use simplicial homology in order to not only compute the topology of a cellular network, but also to discover the clusters of nodes still with no location information. We propose three algorithms for the management of future cellular networks. The first one is a frequency auto-planning algorithm for the self-configuration of future cellular networks. It aims at minimizing the number of planned frequencies while maximizing the usage of each one. Then, our energy conservation algorithm falls into the self-optimization feature of future cellular networks. It optimizes the energy consumption of the cellular network during off-peak hours while taking into account both coverage and user traffic. Finally, we present and discuss the performance of a disaster recovery algorithm using determinantal point processes to patch coverage holes

    An algebraic framework for the greedy algorithm with applications to the core and Weber set of cooperative games

    Get PDF
    An algebraic model generalizing submodular polytopes is presented, where modular functions on partially ordered sets take over the role of vectors in Rn{\mathbb R}^n. This model unifies various generalizations of combinatorial models in which the greedy algorithm and the Monge algorithm are successful and generalizations of the notions of core and Weber set in cooperative game theory. As a further application, we show that an earlier model of ours as well as the algorithmic model of Queyranne, Spieksma and Tardella for the Monge algorithm can be treated within the framework of usual matroid theory (on unordered ground-sets), which permits also the efficient algorithmic solution of the intersection problem within this model. \u

    Submodular linear programs on forests

    Get PDF
    A general linear programming model for an order-theoretic analysis of both Edmonds' greedy algorithm for matroids and the NW-corner rule for transportation problems with Monge costs is introduced. This approach includes the model of Queyranne, Spieksma and Tardella (1993) as a special case. We solve the problem by optimal greedy algorithms for rooted forests as underlying structures. Other solvable cases are also discussed

    Certified data-driven physics-informed greedy auto-encoder simulator

    Full text link
    A parametric adaptive greedy Latent Space Dynamics Identification (gLaSDI) framework is developed for accurate, efficient, and certified data-driven physics-informed greedy auto-encoder simulators of high-dimensional nonlinear dynamical systems. In the proposed framework, an auto-encoder and dynamics identification models are trained interactively to discover intrinsic and simple latent-space dynamics. To effectively explore the parameter space for optimal model performance, an adaptive greedy sampling algorithm integrated with a physics-informed error indicator is introduced to search for optimal training samples on the fly, outperforming the conventional predefined uniform sampling. Further, an efficient k-nearest neighbor convex interpolation scheme is employed to exploit local latent-space dynamics for improved predictability. Numerical results demonstrate that the proposed method achieves 121 to 2,658x speed-up with 1 to 5% relative errors for radial advection and 2D Burgers dynamical problems.Comment: arXiv admin note: substantial text overlap with arXiv:2204.1200
    • …
    corecore