1,109 research outputs found

    University of Windsor Graduate Calendar 2023 Spring

    Get PDF
    https://scholar.uwindsor.ca/universitywindsorgraduatecalendars/1027/thumbnail.jp

    Structural optimization in steel structures, algorithms and applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    University of Windsor Graduate Calendar 2023 Winter

    Get PDF
    https://scholar.uwindsor.ca/universitywindsorgraduatecalendars/1026/thumbnail.jp

    If interpretability is the answer, what is the question?

    Get PDF
    Due to the ability to model even complex dependencies, machine learning (ML) can be used to tackle a broad range of (high-stakes) prediction problems. The complexity of the resulting models comes at the cost of transparency, meaning that it is difficult to understand the model by inspecting its parameters. This opacity is considered problematic since it hampers the transfer of knowledge from the model, undermines the agency of individuals affected by algorithmic decisions, and makes it more challenging to expose non-robust or unethical behaviour. To tackle the opacity of ML models, the field of interpretable machine learning (IML) has emerged. The field is motivated by the idea that if we could understand the model's behaviour -- either by making the model itself interpretable or by inspecting post-hoc explanations -- we could also expose unethical and non-robust behaviour, learn about the data generating process, and restore the agency of affected individuals. IML is not only a highly active area of research, but the developed techniques are also widely applied in both industry and the sciences. Despite the popularity of IML, the field faces fundamental criticism, questioning whether IML actually helps in tackling the aforementioned problems of ML and even whether it should be a field of research in the first place: First and foremost, IML is criticised for lacking a clear goal and, thus, a clear definition of what it means for a model to be interpretable. On a similar note, the meaning of existing methods is often unclear, and thus they may be misunderstood or even misused to hide unethical behaviour. Moreover, estimating conditional-sampling-based techniques poses a significant computational challenge. With the contributions included in this thesis, we tackle these three challenges for IML. We join a range of work by arguing that the field struggles to define and evaluate "interpretability" because incoherent interpretation goals are conflated. However, the different goals can be disentangled such that coherent requirements can inform the derivation of the respective target estimands. We demonstrate this with the examples of two interpretation contexts: recourse and scientific inference. To tackle the misinterpretation of IML methods, we suggest deriving formal interpretation rules that link explanations to aspects of the model and data. In our work, we specifically focus on interpreting feature importance. Furthermore, we collect interpretation pitfalls and communicate them to a broader audience. To efficiently estimate conditional-sampling-based interpretation techniques, we propose two methods that leverage the dependence structure in the data to simplify the estimation problems for Conditional Feature Importance (CFI) and SAGE. A causal perspective proved to be vital in tackling the challenges: First, since IML problems such as algorithmic recourse are inherently causal; Second, since causality helps to disentangle the different aspects of model and data and, therefore, to distinguish the insights that different methods provide; And third, algorithms developed for causal structure learning can be leveraged for the efficient estimation of conditional-sampling based IML methods.Aufgrund der Fähigkeit, selbst komplexe Abhängigkeiten zu modellieren, kann maschinelles Lernen (ML) zur Lösung eines breiten Spektrums von anspruchsvollen Vorhersageproblemen eingesetzt werden. Die Komplexität der resultierenden Modelle geht auf Kosten der Interpretierbarkeit, d. h. es ist schwierig, das Modell durch die Untersuchung seiner Parameter zu verstehen. Diese Undurchsichtigkeit wird als problematisch angesehen, da sie den Wissenstransfer aus dem Modell behindert, sie die Handlungsfähigkeit von Personen, die von algorithmischen Entscheidungen betroffen sind, untergräbt und sie es schwieriger macht, nicht robustes oder unethisches Verhalten aufzudecken. Um die Undurchsichtigkeit von ML-Modellen anzugehen, hat sich das Feld des interpretierbaren maschinellen Lernens (IML) entwickelt. Dieses Feld ist von der Idee motiviert, dass wir, wenn wir das Verhalten des Modells verstehen könnten - entweder indem wir das Modell selbst interpretierbar machen oder anhand von post-hoc Erklärungen - auch unethisches und nicht robustes Verhalten aufdecken, über den datengenerierenden Prozess lernen und die Handlungsfähigkeit betroffener Personen wiederherstellen könnten. IML ist nicht nur ein sehr aktiver Forschungsbereich, sondern die entwickelten Techniken werden auch weitgehend in der Industrie und den Wissenschaften angewendet. Trotz der Popularität von IML ist das Feld mit fundamentaler Kritik konfrontiert, die in Frage stellt, ob IML tatsächlich dabei hilft, die oben genannten Probleme von ML anzugehen, und ob es überhaupt ein Forschungsgebiet sein sollte: In erster Linie wird an IML kritisiert, dass es an einem klaren Ziel und damit an einer klaren Definition dessen fehlt, was es für ein Modell bedeutet, interpretierbar zu sein. Weiterhin ist die Bedeutung bestehender Methoden oft unklar, so dass sie missverstanden oder sogar missbraucht werden können, um unethisches Verhalten zu verbergen. Letztlich stellt die Schätzung von auf bedingten Stichproben basierenden Verfahren eine erhebliche rechnerische Herausforderung dar. In dieser Arbeit befassen wir uns mit diesen drei grundlegenden Herausforderungen von IML. Wir schließen uns der Argumentation an, dass es schwierig ist, "Interpretierbarkeit" zu definieren und zu bewerten, weil inkohärente Interpretationsziele miteinander vermengt werden. Die verschiedenen Ziele lassen sich jedoch entflechten, sodass kohärente Anforderungen die Ableitung der jeweiligen Zielgrößen informieren. Wir demonstrieren dies am Beispiel von zwei Interpretationskontexten: algorithmischer Regress und wissenschaftliche Inferenz. Um der Fehlinterpretation von IML-Methoden zu begegnen, schlagen wir vor, formale Interpretationsregeln abzuleiten, die Erklärungen mit Aspekten des Modells und der Daten verknüpfen. In unserer Arbeit konzentrieren wir uns speziell auf die Interpretation von sogenannten Feature Importance Methoden. Darüber hinaus tragen wir wichtige Interpretationsfallen zusammen und kommunizieren sie an ein breiteres Publikum. Zur effizienten Schätzung auf bedingten Stichproben basierender Interpretationstechniken schlagen wir zwei Methoden vor, die die Abhängigkeitsstruktur in den Daten nutzen, um die Schätzprobleme für Conditional Feature Importance (CFI) und SAGE zu vereinfachen. Eine kausale Perspektive erwies sich als entscheidend für die Bewältigung der Herausforderungen: Erstens, weil IML-Probleme wie der algorithmische Regress inhärent kausal sind; zweitens, weil Kausalität hilft, die verschiedenen Aspekte von Modell und Daten zu entflechten und somit die Erkenntnisse, die verschiedene Methoden liefern, zu unterscheiden; und drittens können wir Algorithmen, die für das Lernen kausaler Struktur entwickelt wurden, für die effiziente Schätzung von auf bindingten Verteilungen basierenden IML-Methoden verwenden

    Parallel and Flow-Based High Quality Hypergraph Partitioning

    Get PDF
    Balanced hypergraph partitioning is a classic NP-hard optimization problem that is a fundamental tool in such diverse disciplines as VLSI circuit design, route planning, sharding distributed databases, optimizing communication volume in parallel computing, and accelerating the simulation of quantum circuits. Given a hypergraph and an integer kk, the task is to divide the vertices into kk disjoint blocks with bounded size, while minimizing an objective function on the hyperedges that span multiple blocks. In this dissertation we consider the most commonly used objective, the connectivity metric, where we aim to minimize the number of different blocks connected by each hyperedge. The most successful heuristic for balanced partitioning is the multilevel approach, which consists of three phases. In the coarsening phase, vertex clusters are contracted to obtain a sequence of structurally similar but successively smaller hypergraphs. Once sufficiently small, an initial partition is computed. Lastly, the contractions are successively undone in reverse order, and an iterative improvement algorithm is employed to refine the projected partition on each level. An important aspect in designing practical heuristics for optimization problems is the trade-off between solution quality and running time. The appropriate trade-off depends on the specific application, the size of the data sets, and the computational resources available to solve the problem. Existing algorithms are either slow, sequential and offer high solution quality, or are simple, fast, easy to parallelize, and offer low quality. While this trade-off cannot be avoided entirely, our goal is to close the gaps as much as possible. We achieve this by improving the state of the art in all non-trivial areas of the trade-off landscape with only a few techniques, but employed in two different ways. Furthermore, most research on parallelization has focused on distributed memory, which neglects the greater flexibility of shared-memory algorithms and the wide availability of commodity multi-core machines. In this thesis, we therefore design and revisit fundamental techniques for each phase of the multilevel approach, and develop highly efficient shared-memory parallel implementations thereof. We consider two iterative improvement algorithms, one based on the Fiduccia-Mattheyses (FM) heuristic, and one based on label propagation. For these, we propose a variety of techniques to improve the accuracy of gains when moving vertices in parallel, as well as low-level algorithmic improvements. For coarsening, we present a parallel variant of greedy agglomerative clustering with a novel method to resolve cluster join conflicts on-the-fly. Combined with a preprocessing phase for coarsening based on community detection, a portfolio of from-scratch partitioning algorithms, as well as recursive partitioning with work-stealing, we obtain our first parallel multilevel framework. It is the fastest partitioner known, and achieves medium-high quality, beating all parallel partitioners, and is close to the highest quality sequential partitioner. Our second contribution is a parallelization of an n-level approach, where only one vertex is contracted and uncontracted on each level. This extreme approach aims at high solution quality via very fine-grained, localized refinement, but seems inherently sequential. We devise an asynchronous n-level coarsening scheme based on a hierarchical decomposition of the contractions, as well as a batch-synchronous uncoarsening, and later fully asynchronous uncoarsening. In addition, we adapt our refinement algorithms, and also use the preprocessing and portfolio. This scheme is highly scalable, and achieves the same quality as the highest quality sequential partitioner (which is based on the same components), but is of course slower than our first framework due to fine-grained uncoarsening. The last ingredient for high quality is an iterative improvement algorithm based on maximum flows. In the sequential setting, we first improve an existing idea by solving incremental maximum flow problems, which leads to smaller cuts and is faster due to engineering efforts. Subsequently, we parallelize the maximum flow algorithm and schedule refinements in parallel. Beyond the strive for highest quality, we present a deterministically parallel partitioning framework. We develop deterministic versions of the preprocessing, coarsening, and label propagation refinement. Experimentally, we demonstrate that the penalties for determinism in terms of partition quality and running time are very small. All of our claims are validated through extensive experiments, comparing our algorithms with state-of-the-art solvers on large and diverse benchmark sets. To foster further research, we make our contributions available in our open-source framework Mt-KaHyPar. While it seems inevitable, that with ever increasing problem sizes, we must transition to distributed memory algorithms, the study of shared-memory techniques is not in vain. With the multilevel approach, even the inherently slow techniques have a role to play in fast systems, as they can be employed to boost quality on coarse levels at little expense. Similarly, techniques for shared-memory parallelism are important, both as soon as a coarse graph fits into memory, and as local building blocks in the distributed algorithm
    • …
    corecore