6 research outputs found

    Evaluating uncertainty with Vertical Barrier Models

    Get PDF
    Vertical Barrier Models (VBM) are a family of imprecise probability models that generalise a number of well known distortion/neighbourhood models (such as the Pari-Mutuel Model, the Linear-Vacuous Model, and others) while still being relatively simple. Several of their properties were established in previous works; in this paper we explore, in a finite framework, further facets of these models: their interpretation as neighbourhood models, the structure of their credal set in terms of maximum number of its extreme points, the result of merging operations with VBMs, the properties of their mass function, the conditions for VBMs to be belief functions or maxitive measures and the approximation of other models by VBMs

    Policymaking under scientific uncertainty

    Get PDF
    Policymakers who seek to make scientifically informed decisions are constantly confronted by scientific uncertainty and expert disagreement. This thesis asks: how can policymakers rationally respond to expert disagreement and scientific uncertainty? This is a work of nonideal theory, which applies formal philosophical tools developed by ideal theorists to more realistic cases of policymaking under scientific uncertainty. I start with Bayesian approaches to expert testimony and the problem of expert disagreement, arguing that two popular approaches— supra-Bayesianism and the standard model of expert deference—are insufficient. I develop a novel model of expert deference and show how it can deal with many of these problems raised for them. I then turn to opinion pooling, a popular method for dealing with disagreement. I show that various theoretical motivations for pooling functions are irrelevant to realistic policymaking cases. This leads to a cautious recommendation of linear pooling. However, I then show that any pooling method relies on value judgements, that are hidden in the selection of the scoring rule. My focus then narrows to a more specific case of scientific uncertainty: multiple models of the same system. I introduce a particular case study involving hurricane models developed to support insurance decision-making. I recapitulate my analysis of opinion pooling in the context of model ensembles, confirming that my hesitations apply. This motivates a shift of perspective, to viewing the problem as a decision theoretic one. I rework a recently developed ambiguity theory, called the confidence approach, to take input from model ensembles. I show how it facilitates the resolution of the policymaker’s problem in a way that avoids the issues encountered in previous chapters. This concludes my main study of the problem of expert disagreement. In the final chapter, I turn to methodological reflection. I argue that philosophers who employ the mathematical methods of the prior chapters are modelling. Employing results from the philosophy of scientific models, I develop the theory of normative modelling. I argue that it has important methodological conclusions for the practice of formal epistemology, ruling out popular moves such as searching for counterexamples

    Unbounded Utility

    Get PDF

    Second Assessment of Climate Change for the Baltic Sea Basin

    Get PDF
    Earth System Sciences; Atmospheric Sciences; Baltic Sea; Environmental Impacts; Regional Climate Change; Regional Climate Projection
    corecore