70,858 research outputs found

    THEORY OF ELECTRON-DIFFRACTION BY VOID LATTICE

    Get PDF
    The theory is given for the electron diffraction by the void lattice in molybdenum, recently observed by Sass and Eyre (see abstr. A52564 of 1973). The results are analysed to see if this method can give useful new information about the voids and their ordering. The predictions of the positions and intensities of the extra peaks agree with observation. However, the quantitative theory shows that void shapes cannot readily be found from the diffraction data. Nor is it easy to get accurate information about void sizes or the nature of the disorder in the void lattice, mainly because of the problems of measuring intensity profiles. The effects of the various forms of lattice disorder are discussed qualitatively

    Structure determination of PF3 adsorption on Cu(100) using X-ray standing waves

    Get PDF
    The local structure of the Cu(100)c(4x2)-PF3 adsorption phase has been investigated through the use of normal-incidence X-ray standing waves (NIXSW), monitored by P 1s and F 1s photoemission, together with P K-edge near-edge X-ray absorption fine structure (NEXAFS). NEXAFS shows the molecule to be oriented with its C3v symmetry axis essentially perpendicular to the surface, while the P NIXSW data show the molecule to be adsorbed in atop sites 2.37±0.04 Å above the surface, this distance corresponding to the Cu-P nearest-neighbour distance in the absence of any surface relaxation. F NIXSW indicates a surprisingly small height difference of the P and F atoms above the surface 0.44±0.06 Å, compared with the value expected for an undistorted gas-phase geometry of 0.77 Å, implying significant increases in the F-P-F bond angles. In addition, however, the F NIXSW data indicate that the molecules have a well-defined azimuthal orientation with a molecular mirror plane aligned in a substrate mirror plane, and with a small (5-10°) tilt of the molecule in this plane such that the two symmetrically-equivalent F atoms in each molecule are tilted down towards the surface

    Optimisation of the T-square sampling method to estimate population sizes.

    Get PDF
    Population size and density estimates are needed to plan resource requirements and plan health related interventions. Sampling frames are not always available necessitating surveys using non-standard household sampling methods. These surveys are time-consuming, difficult to validate, and their implementation could be optimised. Here, we discuss an example of an optimisation procedure for rapid population estimation using T-Square sampling which has been used recently to estimate population sizes in emergencies. A two-stage process was proposed to optimise the T-Square method wherein the first stage optimises the sample size and the second stage optimises the pathway connecting the sampling points. The proposed procedure yields an optimal solution if the distribution of households is described by a spatially homogeneous Poisson process and can be sub-optimal otherwise. This research provides the first step in exploring how optimisation techniques could be applied to survey designs thereby providing more timely and accurate information for planning interventions

    Spin Gaps and Bilayer Coupling in YBa2_2Cu3_3O7δ_{7-\delta} and YBa2_2Cu4_4O8_8

    Full text link
    We investigate the relevance to the physics of underdoped YBa2_2Cu3_3O6+x_{\rm 6+x} and YBa2_2Cu4_4O8_8 of the quantum critical point which occurs in a model of two antiferromagnetically coupled planes of antiferromagnetically correlated spins. We use a Schwinger boson mean field theory and a scaling analysis to obtain the phase diagram of the model and the temperature and frequency dependence of various susceptibilities and relaxation rates. We distinguish between a low ω,T\omega ,T coupled-planes regime in which the optic spin excitations are frozen out and a high ω,T\omega ,T decoupled-planes regime in which the two planes fluctuate independently. In the coupled-planes regime the yttrium nuclear relaxation rate at low temperatures is larger relative to the copper and oxygen rates than would be naively expected in a model of uncorrelated planes. Available data suggest that in YBa2_2Cu4_4O8_8 the crossover from the coupled to the decoupled planes regime occurs at T700KT 700K or T200KT \sim 200K. The predicted correlation length is of order 6 lattice constants at T=200KT=200K. Experimental data related to the antiferromagnetic susceptibility of YBa2_2Cu4_4O8_8 may be made consistent with the theory, but available data for the uniform susceptibility are inconsistent with the theory.Comment: RevTex 3.
    corecore