7,664 research outputs found

    Optimal randomized incremental construction for guaranteed logarithmic planar point location

    Full text link
    Given a planar map of nn segments in which we wish to efficiently locate points, we present the first randomized incremental construction of the well-known trapezoidal-map search-structure that only requires expected O(nlogn)O(n \log n) preprocessing time while deterministically guaranteeing worst-case linear storage space and worst-case logarithmic query time. This settles a long standing open problem; the best previously known construction time of such a structure, which is based on a directed acyclic graph, so-called the history DAG, and with the above worst-case space and query-time guarantees, was expected O(nlog2n)O(n \log^2 n). The result is based on a deeper understanding of the structure of the history DAG, its depth in relation to the length of its longest search path, as well as its correspondence to the trapezoidal search tree. Our results immediately extend to planar maps induced by finite collections of pairwise interior disjoint well-behaved curves.Comment: The article significantly extends the theoretical aspects of the work presented in http://arxiv.org/abs/1205.543

    Improved Implementation of Point Location in General Two-Dimensional Subdivisions

    Full text link
    We present a major revamp of the point-location data structure for general two-dimensional subdivisions via randomized incremental construction, implemented in CGAL, the Computational Geometry Algorithms Library. We can now guarantee that the constructed directed acyclic graph G is of linear size and provides logarithmic query time. Via the construction of the Voronoi diagram for a given point set S of size n, this also enables nearest-neighbor queries in guaranteed O(log n) time. Another major innovation is the support of general unbounded subdivisions as well as subdivisions of two-dimensional parametric surfaces such as spheres, tori, cylinders. The implementation is exact, complete, and general, i.e., it can also handle non-linear subdivisions. Like the previous version, the data structure supports modifications of the subdivision, such as insertions and deletions of edges, after the initial preprocessing. A major challenge is to retain the expected O(n log n) preprocessing time while providing the above (deterministic) space and query-time guarantees. We describe an efficient preprocessing algorithm, which explicitly verifies the length L of the longest query path in O(n log n) time. However, instead of using L, our implementation is based on the depth D of G. Although we prove that the worst case ratio of D and L is Theta(n/log n), we conjecture, based on our experimental results, that this solution achieves expected O(n log n) preprocessing time.Comment: 21 page

    Bolt: Accelerated Data Mining with Fast Vector Compression

    Full text link
    Vectors of data are at the heart of machine learning and data mining. Recently, vector quantization methods have shown great promise in reducing both the time and space costs of operating on vectors. We introduce a vector quantization algorithm that can compress vectors over 12x faster than existing techniques while also accelerating approximate vector operations such as distance and dot product computations by up to 10x. Because it can encode over 2GB of vectors per second, it makes vector quantization cheap enough to employ in many more circumstances. For example, using our technique to compute approximate dot products in a nested loop can multiply matrices faster than a state-of-the-art BLAS implementation, even when our algorithm must first compress the matrices. In addition to showing the above speedups, we demonstrate that our approach can accelerate nearest neighbor search and maximum inner product search by over 100x compared to floating point operations and up to 10x compared to other vector quantization methods. Our approximate Euclidean distance and dot product computations are not only faster than those of related algorithms with slower encodings, but also faster than Hamming distance computations, which have direct hardware support on the tested platforms. We also assess the errors of our algorithm's approximate distances and dot products, and find that it is competitive with existing, slower vector quantization algorithms.Comment: Research track paper at KDD 201
    corecore